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A B S T R A C T

Climate change impacts are a serious threat to food provisioning, security and the economy. Thus, assessing
agricultural suitability and yield reduction under climate change is crucial for sustainable agricultural pro-
duction. In this study, we used two sub-models of the agro-ecological decision support system MicroLEIS
(Terraza and Cervatana) to evaluate the impacts of climate change on land capability and yield reduction or
wheat and sunflower as major rainfed crops in different Mediterranean soil types (in Andalucia, Southern Spain).
The Terraza sub-model provides an experimental prediction for the bioclimate deficiency and yield reduction,
while the Cervatana sub-model predicts the general land use suitability for specific agricultural uses. Sixty-two
districts in Southern Spain were modeled and mapped using soil data and the A1B climate scenario (balanced
scenario) for three 30-year periods ending in 2040, 2070 and 2100, respectively. Our results showed that the
majority of agricultural soils were suitable for wheat production, and less for sunflowers, especially under
projected climate change scenarios. Extreme impacts of climate change were observed in the soil types Typic
Xerofluvents and Calcic Haploxerepts, where the land capability was reduced from Good and Moderate classes to
the Marginal class. This was especially observed in sunflower crops by 2100. Yield reduction of sunflower was
much higher than the reduction for wheat, especially under the projected climate periods, where the results for
2100 showed the severest effect on crop yields with about 95% of the sunflower area showing yield reductions.
This high variability of the evaluation results demonstrates the importance of using soil factors, climate and crop
information in conjunction in decision-making regarding the formulation of site-specific soil use and manage-
ment strategies.

1. Introduction

An increase in global food demand is expected in future decades,
and the next 50 years pose huge challenges for the sustainability of
agriculture and food production (Tilman et al., 2002). This demand will
place pressure on soil functions, and provisioning and regulation of

ecosystems services. In this context it is important to find sustainable
practices to mitigate the impacts of climate change and human pressure
on soil resources (DeFries et al., 2016; Untenecker et al., 2017; Pereira
et al., 2018; Aggarwal et al., 2019).

Climate change and the increasing population are threatening the
global food security (Hanjra and Qureshi, 2010; Poppy et al., 2014;
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Fanzo et al., 2018). Climate change is expected to increase the humans
affected by food insecurity, where from 5 to 170 million people at risk
of hunger by 2080 (Rosegrant et al., 2008; Schmidhuber and Tubiello,
2007). Predicted changes in temperature, precipitation, carbon dioxide,
and the frequency and severity of extreme events, are expected to have
profound effects on soil water availability, carbon storage, and yields
(Cox et al., 2018). Recent studies suggest that droughts will intensify in
some seasons in areas such as the Mediterranean region and Africa
(Smith et al., 2016; Muñoz-Rojas et al., 2017).

Agriculture in the Mediterranean region is inextricably linked to soil
quality and water supply (Zalidis et al., 2002). Climate change pre-
dictions in the Mediterranean area show that agricultural productivity
is projected to decrease (Carsan et al., 2014; Anaya-Romero et al., 2015;
Keesstra et al., 2016; Muñoz-Rojas et al., 2017; Jat and Bijay-Singh,
2018). On the other hand, productivity could increase in some locations
if farmers adapt to the future climate conditions. In situations where
farmers do not adapt a decrease in this productivity is expected (Moore
and Lobell, 2014; Rahimi-Moghaddam et al., 2018). Also, the influence
of soil properties and available water must be considered to sustain
crop production (Kang et al., 2009; Hondebrink et al., 2017). Several
studies have investigated the effects of soil physio-chemical character-
istics and precipitation on yield variability for major crops, such as
corn, soybean and wheat (Si and Farrell, 2004; Bekele et al., 2017;
Jarecki et al., 2018; Jourgholami et al., 2019). According to Kitchen
et al. (2003) and Whetton et al. (2018) multiple factors affect agri-
cultural land suitability. The relationship between yield, topography
and soil properties can be nonlinear and other factors may interact with
these three (Juhos et al., 2016). Evaluation of the relationships between
climate change and crop productivity depend on a combination of
modelling and measurement (Challinor et al., 2009).

Suitability of land for agricultural production is affected by complex
interactions between topography, soil properties, climate conditions
and management practices (Jaynes et al., 2003; Kravchenko et al.,
2005; Jaisli et al., 2018; Juhos et al., 2019; Akbari et al., 2019), and can
be determined by land evaluation, which is the process of assessing the
potential use of land on the basis of its characteristics (Rossiter, 1996).
Land evaluation modeling is a useful approach to identify the most
adequate agricultural land use resulting from the interaction between
topography, soil properties, climate and agricultural practices
(Shahbazi et al., 2009). Detecting environmental limits in sustainable
farming is an important stage in the process of land use planning
(Bandyopadhyay et al., 2009). Land use planning relates major land
uses to soil capability and suitability for each particular site, and is an
important prerequisite for achieving environmental sustainability. Any
agricultural practice will have negative impacts when applied on a land
with low suitability for that agricultural use. For example, in some areas
of the Mediterranean region, the use of marginal agricultural land is
one of the primary causes of soil degradation (De la Rosa et al., 2009;
Anaya-Romero et al., 2015). Climate change affects crop production
directly and indirectly (Yang et al., 2017; Tebaldi and Lobell, 2018;
Neset et al., 2018; Dong et al., 2018), thus to achieve adequate pre-
dictions for the future scenarios, there is an essential need to consider
soil properties. Land capability is expected to decrease under climate
change, and summer crops are expected to be more sensitive to climate
change than winter crops (California Department of Food and
Agriculture, 2013).

Land evaluation models are increasingly being used to assess the
impacts of climate change on land capability and land degradation,
planning of land use and designing suitable soil management systems
(Anaya-Romero et al., 2011, 2015; Akbari et al., 2019). One of such
tools is the MicroLEIS DSS, an agro-ecological decision support system
that was developed to help decision-makers to evaluate specific agro-
ecological problems (De la Rosa et al., 2004). It was designed as a
knowledge-based approach, which incorporates a set of information
tools, linked to each other. Thus, custom applications can be performed
on a wide variety of problems related to land productivity and land

degradation (De la Rosa et al., 2009; Abd-Elmabod et al., 2017). Several
agroecological or crop models have been developed and applied in
different areas in recent studies to assess land suitability or capability
for wheat (El Baroudy, 2016). Other crops such as sunflower are by far
less studied, despite their importance in Mediterranean regions and
their potential for cultivation in marginal lands (Chiaramonti and
Panoutsou, 2019). One of the few examples is the research developed
by Rabati et al (2012) in Iran, who used MicroLEIS to assess land
suitability for sunflower and maize.

Despite advances in the foreseen impacts of a changing climate in
the Mediterranean region (Malek et al., 2018), and an increasing
number in modelling approaches for predicting crop yields (Iizumi
et al., 2018), several gaps remain at local and regional scales. For ex-
ample, many studies do not consider edaphic factors for evaluation of
land suitability and there is lack of spatial analyses reflecting model
outputs (Abd-Elmabod et al., 2017). MicroLEIS DSS presents several
advantages such as the integration of multiple databases and models
(13 land evaluation models), which combined can, among other ap-
plications, assess land capability, predict yield increases or reductions
of relevant crops, and identify land management strategies for climate
adaptation, i.e. reducing the salinity and exchangeable sodium per-
centage or improving the drainage (Anaya-Romero et al., 2015). Fur-
ther advantages in comparison to other modelling approaches are its
integrated tool for data spatialization and the requirement of inputs
that are practical to obtain in field surveys (Muñoz-Rojas et al., 2013).
MicroLEIS has been widely used over the last 30 years for different
purposes, mostly in the Mediterranean region. Focusing on agricultural
land use, planning, and management for soil protection purposes under
current environmental conditions (De la Rosa et al., 2009; Abd-
Elmabod et al., 2019a). Recent developments of Micro LEIS allow that
some of the integrated models, can be run under different hypothetical
scenarios of climate and agriculture management (Muñoz-Rojas et al.,
2015, 2017; Lozano-García et al., 2017; Abd-Elmabod et al., 2017).

In this study the MicroLEIS DSS model was applied to evaluate the
impacts of climate change on land capability and yield reduction for
wheat and sunflower as major rainfed crops in different Mediterranean
soil types. Specifically, we present a study in the Andalusian region
(Southern Spain) under different climate change scenarios. These future
projected scenarios covered three time periods, e.g. 2011–2040 (2040,
near-future), 2041–2070 (2070; mid-future) and 2071–2100 (2100 far-
future) under the A1B socio-economic scenario (medium emissions
scenario) (IPCC, 2014; Agencia Estatal de Meteorología, www.aemet.
es).

2. Material and methods

2.1. Study area

The Andalusia region extends over the southern part of Spain be-
tween latitudes 36° 00′ and 38° 44′ N and longitudes 1° 30′ and 7° 45′W
(Fig. 1). This region covers an area of approximately 87,600 km2 and
comprises 62 districts that are grouped into eight provinces (Almeria,
Cadiz, Cordoba, Granada, Huelva, Jaen, Malaga, Sevilla).

The topography and land use are shown in Fig. S1-A. The topo-
graphy ranges from the lowlands of the Guadalquivir basin to the
mountain ranges in the Baetic Cordillera and Sierra Morena (Benet,
2006; Gutiérrez et al., 2013). According to Vera (1994), there are three
main geological units (Fig. S1-C) in this region. First, the northern part
consists of Sierra Morena, a crystalline massif which is very ancient
(Paleozoic), and was part of the Armorica continent. The second unit is
represented by the Neogene tectonic basin of the Guadalquivir (formed
from the Middle Miocene (Langhian) until present day). The third
geological feature (in the south-east) is the Baetic cordillera (Triassic-
Lower Miocene), which is the westernmost part of the European Alpine
chain. In Andalusia, there are four main river basins, Guadalquivir in
central Andalusia, Guadiana in the northwest, Sur in the south and
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Segura in the southeast. The most important river is the Guadalquivir
and its main tributaries: Guadalimar, Guadiana Menor, and Genil (Fig.
S1-D).

According to the climate calculations using the CDBm climate da-
tabase integrated in MicroLEIS DSS, the Huércal Overa station (AL02)
in Almería, is the most arid location in the study area (Fig. S1-E and S1-
F), with an annual rainfall of 275 mm, a mean temperature of 17 °C,
potential evapotranspiration (ET0) of 883 mm, and an average of 10
arid months (in which the ET0 exceeds the actual precipitation) per
year. Conversely, the most humid area is Gaucín (MA05) in Málaga,
with an annual rainfall of 1170 mm, a mean temperature of 14.9 °C, an
ET0 of 772 mm, and an average of 5 arid months per year. Excluding
these two extreme cases (arid and humid), the rest of the study area
typically has a Mediterranean climate with an annual precipitation
average of 586 mm, mean annual temperate of 14.7 °C, and average ET0

of 830 mm.
Approximately half of the Andalusia region is occupied by natural

vegetation areas (mostly forest) while most of the remainder is occu-
pied by agricultural land. Less than 5% of the region is urban or water
bodies (Bermejo et al., 2011). Agriculture in Andalusia has con-
ventionally been based on systems integrating wheat crops, olive trees
and vineyards, but in recent decades, traditional systems have been
replaced with intensive and extensive monocultures e.g., wheat, sun-
flower, rice, cotton and sugar beet (Muñoz-Rojas et al., 2011).

Major changes in land use/land cover occurred within the region
between 1956 and 2007 as permanent crops increased to occupy 20%
(17,234 km2, in 2007) of the study area instead of 15% (13,324 km2, in

1956) (Anaya-Romero et al., 2011) Also, heterogeneous agricultural
land increased to cover 13% (11,421 km2) of Andalusian total area in
2007 instead of 12% (10,450 km2) in 1956 (Muñoz-Rojas et al., 2011).
These increases in cultivated land are directly related to crop types and
their production.

2.2. Description of the MicroLEIS decision support system (DSS)

MicroLEIS DSS is able to predict the optimum land use and man-
agement practices for each soil type. Additionally, it is able to assess the
optimum biomass productivity, the minimum environmental vulner-
ability and through a recent update, the maximum capacity for soil C
sequestration (Muñoz-Rojas et al., 2013, 2015, 2017). MicroLEIS in-
cludes three databases; soil (SDBm), climate (CDBm) and management
(MDBm) and 13 models (Abd-Elmabod et al., 2017). In this study, two
of those models, Terraza and Cervatana, were run under different cli-
mate scenarios for wheat and sunflower crops in order to evaluate soil
productivity as bioclimate deficiency/yield reduction, and general land
suitability, respectively.

2.2.1. Soil database (SDBm)
The soil database (SDBm plus) (De la Rosa et al., 2002) includes

detailed information of 1103 soil profiles in Andalusia inculding site
information, morphological descriptions and detailed soil physio-
chemical analyses. In this study, we selected the most representative
soil profiles, based on dominant soil types, for each natural region of
Andalusia (total of 62 soil profiles) (Fig S2). Table 1 shows the ranges

Fig. 1. Top left location of Andalusia region in Spain. Bottom right provinces (8) and natural regions (62).

S.K. Abd-Elmabod, et al. Geoderma 374 (2020) 114453

3



and dominant values of land characteristics of the 62 benchmark soils
for Andalusia.

Soil profiles were classified to the sub-group level of USDA Soil
Taxonomy (USDA, 2014), resulting in 31 soil units that were included
in seven soil orders. Table S1 shows the area coverage for existing soil
orders in Andalusia region which comprise Alfisols (18,361 km2; 21%),
Aridisols (2450 km2; 3%), Entisols (18,564 km2; 21%), Inceptisols
(22,518 km2; 26%), Mollisols (6269 km2; 7%), Ultisols (3748 km2; 4%)
and Vertisols (15,691 km2; 18%). The three major soil sub-groups
(comprising 13% of the surface area) are Typic Haploxererts, Typic
Haploxerults, and Lithic Haploxerepts that represents 5.0, 4.3 and 3.6%
of the area, respectively (Fig. S2 and Table S1). Several soil char-
acteristics have been used in this research, including organic matter,
pH, calcium carbonate content, exchangeable sodium percentage, tex-
ture, drainage class and depth.

2.2.2. Climate database (CDBm)
Current climate variables, mainly precipitation and temperature

(1960–2010), were obtained from the CDBm climate database which is
one of the main components of MicroLEIS DSS. Climate observations
from 62 climate stations distributed throughout the eight provinces of
the Andalusia region were considered as a pool from which to draw
eight stations with the most accurate representation of the local climate
and the spatial variation for scenario modelling. To do this, in each
province, one representative climate station (among others) was se-
lected. For instance, in the case of precipitation, the spatial variation
can vary within the same province, and in many provinces the station
with the highest annual precipitation receives more than double the
amount of rainfall of the lowest reported value for the same province.
Therefore, the most representative climate stations from each province
were selected, e.g. those with climate values closest to the average for
each province. The monthly climate parameters of the eight re-
presentative climate stations from 62 station of Andalusia were calcu-
lated for different climate change scenarios; the current situation, and
projections for future 30-year periods ending in 2040, 2070 and 2100
respectively.

2.2.3. Climate change scenarios
In this research, the average values of 18 regional climate change

models for the SRES scenario A1B (balanced) for three time periods
2011–2040, 2041–2070 and 2071–2100 besides current climate situa-
tion were used (Agencia Estatal de Meteorología, www.aemet.es). Fig. 2
shows decreasing precipitation and increasing minimum and maximum
temperature under the different projected time periods of climate
change compared with the current situation for the different seasons of
the year. In this figure, the y-axis represents the cumulative values of
precipitation or the mean values of temperature for the four seasons
under each time periods.

2.2.4. Climate indices
Different climate indices that are related to crop productivity were

calculated based on CDBm, including humidity, aridity and precipita-
tion concentration indices. The Humidity index (HUi) is used to esti-
mate the general availability of water to plants. It is also often used to
anticipate the needs of artificial drainage and/or irrigation in an area
(FAO, 1996). The humidity index can be calculated based on Eq. (1) as:

=HU P
ETi

0 (1)

where, P is the precipitation and ET0 is the reference evapotranspiration
(calculated according to Thornthwaite’s method). The Aridity index
(ARi) is a simple procedure to estimate the general climate aridity and
is calculated as the number of months of the year when the ET0 exceeds
the precipitation. According to Oliver (1980), the precipitation con-
centration index (PCi) was proposed to estimate the seasonality of
rainfall from the temporal variability of monthly rainfall. It is expressed
as a percentage, according to Eq. (2) as:

=
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where pi is the monthly precipitation in month i.

2.2.5. Yield reduction and land capability models
The Terraza and Cervatana models can evaluate soil productivity as

bioclimatic deficiency, and general land capability respectively. The
choice of land components (site/soil, climate, and crop/management
factors) as input variables or diagnostic indicators for the predictive
models is a basic part of the land capability analysis (De la Rosa et al.,
2004, 2009). Fig. 3 shows a conceptual scheme of the Terraza and
Cervatana models that link site, soil, climate and crop factors with soil
quality. The calculations of the Terraza and Cervatana models are
empirical, formulated and calibrated using expert knowledge. These
models have been previously calibrated and validated in the field under
management practices, soil types, climate, and time scales like those
used in this study (De la Rosa, 1974; De la Rosa et al., 1981, 1992; De la
Rosa et al., 2004). Indeed, the models were calibrated in the study area
(Andalusia) (De la Rosa and Moreira, 1987; Anaya-Romero et al., 2015)
during the modelling development phase, where validation included
calculation of standard errors, root mean square error, slope and in-
tercept of regression, and correlation of observed vs. predicted results.

The bioclimatic deficiency model (Terraza) depends in its calcula-
tions mainly on climate and crop parameters (Fig. 3). The climate
change models predict climatic parameters that can be entered into the
Terraza model to study the impact of climate change on the bioclimate
deficiency. Predicted climate parameters values under different future
periods such as temperature and precipitation can be entered into the
Terraza model to study the impact of climate change on the bioclimate
deficiency. The average values of 18 regional climate change models for
the A1B scenario and 30-year periods (2040, 2070 and 2100) as well as
the current climate were examined by the Terraza and Cervatana
models for evaluating yield reduction, and agriculture land suitability,
respectively. This work focuses on studying two major rainfed crops
(wheat and sunflower), since irrigated areas in Andalusia represent only
10%; the dominant cultivation practices (90%) depend on rainfed
agriculture.

In this study, the Terraza model investigates the response of wheat
and sunflower productivity, the major crops in the studied region, to
climate change. The assessment of expected yield reduction by water
shortage was studied for the actual agricultural area, approximately
48,580 km2 (55.5% of Andalusia), and the model results were grouped
into eleven classes ranging from 0 (no yield reduction) to 10 (the yield
reduction is between 90 and 100%). Water deficiency and water surplus
for wheat and sunflower crops were calculated, then yield reduction for
each land unit were calculated.

Table 1
Ranges and dominant values of land characteristics of the 62 benchmark soils
for Andalusia. (*) Soil parameters measured within the soil section 0 to 50 cm.
Source: adapted from De la Rosa et al. (2002).

Land characteristics, Unit (Range) Dominant

Site-related characteristics Landform (plan-mountain), hill
Slope gradient, % (0.7–>30), 2
Elevation, m asl (1–2080), 490

Soil-related characteristics Useful depth, cm (0–260), 150
Drainage (poor-excessive), well
Particle size distribution* (sand-clay), clay
Superficial stoniness (nil–abundant), nil
Organic matter, * % (0.1–4.3), 1.6
pH* (5.1–8.7), 7.4
Cation exchange capacity, *
meq/100 g

(2.5–50.4), 17.5

Sodium saturation, * % (0.2–11.9), 2.7
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The Cervatana model predicts the general land capability for spe-
cific agricultural uses, depending on information about; topography (t),
soil factors (l), erosion risk (r) and bioclimate deficiency (b) (Fig. 3).
The model results are grouped into four classes: S1-optimum, S2-good,
S3-moderate and N-marginal that are calculated for each specific
combination of soils and crops (Fig. S3). Under these four classes, 13
subclasses were categorized based on the number of limiting factors
that affect the agricultural use (Fig. S3).

The bioclimate deficiency classes (output from the Terraza model)
are established by combining the classes of water deficiency and frost
risk based on the criterion of maximum limitation. Bioclimate

deficiency calculation starts by determining the monthly ET0 using the
method of Thornthwaite (1948), as explained in Eq. (3);

= ⎛
⎝

⎞
⎠

ET Tm
I

1.6 10 a

0 (3)

where Tm is monthly mean temperature (°C); I is the annual heat index;
and a an empirically determined exponent. I and a are constants for
each site, which can be calculated as illustrated in Eq. (4) and Eq. (5),
respectively:
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Fig. 2. Variation of climate parameters under A1B climate change scenario for three projected years 2040, 2070 and 2100 during Spring, Summer, Autumn and
Winter seasons. Y-axis shows values for precipitation (mm), minimum temperature (Tmin, °C), and maximum temperature (Tmax, °C). Source: Adapted from State
Meteorological Agency, 2011.

Fig. 3. General scheme of the Terraza and Cervatana models. Green colour is assigned for land suitability model (Cervatana), blue represents the bioclimatic
deficiency model (Terraza) and the soil qualities are shown in orange.
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∑= ⎛
⎝

⎞
⎠

I Tm
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12 1.514

(4)

= ∙ − ∙ + ∙ +a 0.000000675 I 0.0000771 I 0.01792 I 0.492393 2 (5)

A second step for calculating the yield reduction is to consider the
crop characteristics. The crop monthly evapotranspiration (ETc) and
the monthly real evapotranspiration (ETa) are used as crop factors and
they are calculated based on Eq. (6) and Eq. (7), respectively, as:

= ∙ET ET Kc c0 (6)

= −ET ET Da c (7)

where Kc is crop coefficient and D is the monthly water deficit. If the
ETa is positive, there is a surplus or excess (S) of water; if the ETa is
negative, there is a water deficit (D). All the calculated values in Eq. (6)
and Eq. (7) are dependent on the growth stage of each crop.

The monthly reduction of yield (Ry) is calculated using Eq. (8):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

= −Ry Ky ET
ET

Ya
Ym

1 1a

c (8)

where Ky is the crop coefficient of efficiency, Ya is the real crop pro-
duction and Ym is the potential crop production.

The annual reduction in crop production (Rys) is calculated by Eq.
(9):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

∙Rys Kys SET
SET

1 100a

c (9)

where SETa is the sum of the monthly real evapotranspiration and SETc
is the sum of the monthly evapotranspiration of the crop during its
phenological period.

In this study the three coefficients considered to model crop re-
sponses were the monthly crop coefficient (Kc), the monthly crop
coefficient of efficiency (Ky), and the coefficient of seasonal reduction
(Kys). These coefficients were determined using the FAO databases
(FAO, 1976, 1986), for wheat and sunflower. The Kc and Ky for these
two crops are presented in Table 2. The Kys values are 1.00 and 0.95 for
wheat and sunflower, respectively.

Frost risk was estimated according to the criteria of Verheye (1986)
and then adapted for the Mediterranean regions. The frost risk was
defined as the number of months with minimum average temperature
below 6 °C.

2.3. Spatial analyses

The Terraza and Cervatana models’ results were integrated in a
Geographical Information System (GIS) environment for spatial re-
presentation of the land capability classes and yield reduction in the
study area. ArcGIS 10.4.1 software was used for data processing of the
land resources database to produce the final maps.

3. Results

3.1. Climate data under future climate change

The monthly climate parameters (Tmax, Tmin and P) and the ET0,
ARi, HUi and PCi of eight representative meteorological stations of
Andalusia provinces are presented graphically (Fig. 4 and Fig. S4) for
the projected years under the A1B scenario (2040, 2070, and 2100) as
well as the current situation. Generally, the trend predicts a decrease of
precipitation and increase in temperature over time. Specifically, pre-
cipitation is expected to decrease in 2070 and 2100 compared with the
current situation, whereas a slight increase is projected for 2040.
Conversely, the mean temperature is expected to increase during the
projected years of 2040, 2070, and 2100 (Fig. 4).

Projections of the annual climate indices are presented in Fig. S4. In
general, the ET0 and ARi are expected to increase in the future as a
result of temperature increasing and precipitation decreasing for all the
studied meteorological stations. The HUi is predicted to decrease under
the projected future climate change in all locations. The PCi index re-
sults show a different trend compared with other studied parameters, as
there is an increase in 2040 followed by a decrease in 2070 and another
increase in 2100 for almost all meteorological stations.

3.2. Soil characteristics

Several soil characteristics have been used in this research, in-
cluding organic matter, pH, calcium carbonate content, exchangeable
sodium percentage, texture, drainage and soil depth. For the soil or-
ganic matter, the soil type HU01-Lithic Xerochrepts showed the highest
content of 4.3%. Approximately 28% of the area had pH values ranging
between 5 and 6.5 (strongly to slightly acidic soils, respectively, Soil
Survey Division Staff, 1993). However, around 22% of the study area
had pH values above 8. Regarding the carbonate content, the highest
percentage (> 40%) was observed in soils that were formed from cal-
careous parent material, such as the soil type GR07-Calcic Haploxer-
epts. The lowest cation exchange capacity (CEC = 1.3 meq/100 g) was
found for coarse sandy soils (GR03-Typic Xerorthents), while the
highest values were observed in the heavy clay soils, where the CEC
value reached up to 50.4 meq/100 g (in the soil type CO02-Typic
Haploxererts). Soil salinity problems were observed in some natural
land use areas (i.e. SE05, HU06 and AL04) with a high concentration of
salt. The highest salt concentration (30.8 dS/m) was found in soil type
SE05-Typic Fluvaquents. The calcic soils had low exchangeable sodium
percentage (ESP) compared with the saline soils which had high ESP
values. There was a massive variation in the soil texture within the
study area from sandy to clayey soil. The drainage status in the study
area can be divided into different classes: good (51% of the total area),
moderate (29%), poor (14%), and excessive (6%). Regarding soil depth,
shallow soils prevail in the natural land use and forest areas, where the
depth does not extend to 50 cm (e.g. GR06-Typic Xerorthents and
HU02-Lithic Xerorthents, with a depth of 12 and 9 cm, respectively).
The deepest soils were found in GR05-Typic Rhodoxeralfs and SE06-
Typic Haploxerults soil types, with 170 and 250 cm depth, respectively.

3.3. Land capability

Land capability in Andalusia was evaluated under the current and
future climate change scenarios (A1B) based on climatic parameters
and soil characteristics. Besides the evaluation of agricultural areas, the
land capability assessment was applied on the forest soils too as they
occupied approximately 42% of the study area. The land capability
classification for the forest areas ranged from moderately capable class
(S3tr, moderate land capability with slope and soil erodibility as lim-
iting factors) to marginal class (Ntl, not capable for agricultural use
with slope and soil factors as maximum limitations). Accordingly, to-
pography, shallow soil depth, and high erosion risk are the most

Table 2
Kc and Ky for Wheat and Sunflower crops according to FAO (1976, 1986).

Months Crop coefficient
(Kc)

Coefficient of efficiency (Ky)

Wheat Sunflower Wheat Sunflower

January 0.75 – 0.20 –
February 0.75 – 0.20 –
March 0.81 0.48 0.20 0.25
April 0.84 0.75 0.33 0.38
May 0.46 1.00 0.52 0.83
June – 0.88 – 0.80
November 0.35 – 0.20 –
December 0.75 – 0.20 –
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Fig. 4. CDBm output for eight representative metrological stations of Andalusia region under A1B climate change scenario for three projected periods 2040, 2070 and
2100 besides current climate situation. Tm: temperature mean in °C, P: precipitation in mm, ET0: reference evapotranspiration in mm, ARi: aridity index. X-axis
represents the months of the year from January, J to December, D. The two letters symbol (Al, Almeria; CA, Cadiz; CO, Cordoba; GR, Granada; HU, Huelva; JA, Jaen;
MA, Malaga and SE, Sevilla) represent the eight provinces of Andalusia region and the two digits represent the number of representative metrological stations. Left
hand y-axis shows ET0 and P, Right hand y-axis shows Tm.
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Fig. 5. Land capability (spatial distribution and pie diagram with % area of capabilities classes) for wheat and sunflower in Andalusia under current and future
projections (2040, 2070, and 2100) of climate change scenario. Limitation factors; t, topography (slope type and slope gradient); l, soil (useful depth, texture,
stoniness/rockiness, drainage, and salinity); r, erosion risk (soil erodibility, slope, vegetation cover, and rainfall erosivity); b, bioclimatic limitation.
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limiting factors in the forest areas. Some soils that are currently used for
the forests uses, such as JA06-LHXI, have a good capability for agri-
culture (S2) (Fig. 5).

Regarding the land capability for agricultural areas, land capability
for the areas under wheat cultivation, ranged from S2r/S2l (good;
CA02-Chromic Haploxererts, CO07-Typic Xerofluvents and SE08-Aquic
Haploxeralfs), to Ntl (not capable; GR04-Lithic Haploxerepts). As
shown in Fig. 5, 7.6% of the study area has S2 class (good capability)
with only one limiting factor (soil erodibility, r or soil factors, I). Cur-
rently, 14.2% of the area has S2 class with three limiting factors, but
this is expected to increase slightly (to 16.4%) under the projected
climatic period (2040, 2070 and 2100) (Fig. 5). Additionally, the results
showed that 19.1% of the area is classified as not capable for agri-
cultural use (N) and this percentage does not change under the different
climatic periods (Fig. 5). In most cases, under wheat cultivation, land
capability class is not expected to change in the future climate, except
for some soil types that are in GR01, HU02 and JA01 units. In these
regions, slight negative impacts at subclass level are expected, espe-
cially under the 2040 scenario.

For sunflower crops, soil units CA03-CRXA, HU05-APXA, JA01-
TRXA, SE01-CHXA, SE02-TRXA, SE09-TXFE and CA02-THXV currently
have a good land capability subclass (S2lr) but it is expected to decrease
to (S2lrb) in 2040, 2070 and 2100 (Fig. 5), mostly at the subclass levels.
GR05-TRXA is currently classified as S2lr and is projected to remain as
S2lr in 2040 and 2070, but is expected to change to moderately capable
for agricultural use (S3b) in 2100 (Fig. 5). On the other hand, extreme
changes in land capability for sunflower cropping are observed in the
soil unit AL02-CHXI, where the capability class S3lrb will likely change
to Nb (not capable) in the future. In addition, land capability of AL08-
TXFE is currently S2lrb but is expected to change to S3b in 2040 and
2070, and Nb in 2100. Fig. 5 shows a detailed temporal (current, 2040,
2070 and 2100) and spatial analysis of land capability under sunflower
cultivation.

3.4. Yield reduction

The largest yield reductions were found in sunflower, as the ex-
pected yield reductions varied between slight (approximately below
10% in GR09, HU03, MA01 and JA04 soil units) to extreme reductions
of 80% for AL02, AL05, AL07 and AL08 soil units (Figs. 6 and 7). The
climatic periods of 2070 and 2100 had more yield reduction compared
with current and 2040 (Fig. 7). Much lower yield reductions are pre-
dicted for wheat, which were negligible except in a few regions, like
AL02 (Figs. 6 and 7), under the A1B climate change scenario. Water
surplus decreased and the water deficit increased in all soil units for all
future years (2040, 2070 and 2100) compared to the current situation.
Expected yield reduction by water shortage increased systematically in
the future years.

Regarding wheat, in 2040, 2070, and 2100, only 2, 6 and 10% of the
study area, respectively, experience wheat yield reduction whereas the
rest of the Andalusia does not show a reduction in the wheat yield. The
observed affected areas are mainly AL02, AL07 and AL08 soil units (all
in Almeria province). In the long-term, wheat cultivation will be partly
affected by future climate change, as an expected yield reduction to up
to 36% between 2040 and 2100 could be observed for the AL02 soil
unit.

Conversely, the sunflower crop is highly susceptible to future cli-
mate change in 2040, 2070, and 2100. Even under the current condi-
tions, the sunflower crop is threatened by the reduction in its yield, as
only 51% of the study area is resistant to yield reduction. About 10% of
the rest of the area (49%) is affected by yield reductions between 21
and 80%. In 2040, around 22% of the sunflower-cropped area will be
resistant to the climate change effects. In 2070 and 2100, only about
5% of the sunflower area would experience no yield reduction.
Conversely, around one fifth of the area showed the highest yield re-
duction classes between 50 and 80% in 2100. Thus, comparing with the

current scenario, all projected future periods (2040, 2070 and 2100)
show higher expected yield reduction by water deficit.

4. Discussion

4.1. Climate parameters

A decrease in the total quantity and extent of precipitation is ex-
pected in the future as a direct effect of climate change under the A1B
scenario. Additionally, the precipitation will tend to be concentrated in
a shorter period within a year. Generally, global climate change can
accelerate the hydrological cycle, increase air temperature and eva-
poration. A warmer atmosphere can hold more water vapor; conse-
quently, the precipitation concentration will tend to increase. As a re-
sult, extreme precipitation events can become more frequent and
intense, which can lead to more severe soil degradation (Shahbazi and
Jafarzadeh, 2010; Trenberth, 2008; De La Rosa et al., 1996).

These findings are consistent with Al-Mukhtar and Qasim (2019)
and Fonseca and Santos (2019) where the results obtained from this
research as the precipitation is predicted to decrease and temperature is
predicted to increase in 2040, 2070, and 2100. The studied indices
(especially, ET0 and ARi) are expected to increase in the future with
increasing temperature and decreasing precipitation. These findings are
consistent with those reported by Anaya-Romero et al. (2015) and De
La Rosa et al. (1996).

4.2. Land capability

Overall, the land evaluation models applied in this research can be
used to predict the effects of expected future climate change on the
agricultural activities through their impact on wheat and sunflower
yield reduction, and land capabilities for agricultural practices.
Although climate change projections have been used to study impacts
on agricultural and natural ecosystems around the world, their influ-
ence on the quality of agricultural land has been poorly studied
(Mueller and Lotze-Campen, 2012; Luedeling et al., 2014). These gen-
eral outcomes are consistent with Niknam et al. (2018) who applied the
Terraza and Cervatana models to assess the effects of climate change on
bio-climatic constraints and land capability classes in the Miandoab
Plain, Iran. However, while the Terraza and Cervatana models were
used to evaluate chronic effects, the impact of extreme events is not
covered, and should be built into crop modeling techniques; otherwise
there is a risk of underestimating crop yield reductions, which in turn
would result in the application of inappropriate policies for confronting
climate change (Moriondo et al., 2011; Reynolds et al., 2016).

As Almeria province is the most arid area in Andalusia (Anaya-
Romero et al., 2015; State Meteorological Agency, 2011), Typic Hap-
loxerepts soils (exemplified in AL07), have a low rating in terms of their
suitability to agricultural production because they are not resilient to
change in their natural land uses. Consequently, the Cervatana outputs
showed that the Almeria land capability was dominantly marginal
capable for agricultural use even for wheat, and different from other
provinces that were not as sensitive to climate-induced yield reduction.

The Cervatana model was applied for the existing land uses/land
cover (agriculture, forest, and pasture) in Andalusia. Remarkably, the
model showed a good land capability for agriculture in some forest
areas. Thus, it may be possible to shift some forested areas into culti-
vated crops. Nevertheless, this move may adversely affect soil protec-
tion (e.g. soil erosion) and consequently decrease land capability in the
long term by increasing soil erodibility (r) which is a major limiting
factor for land capability in the Andalusia region. This is consistent with
Serpa et al. (2015) who indicated a potential negative impact of the
expansion of sunflower cultivation for soil protection in drier areas as
the replacement of pasture by sunflower (under A1B climate change
scenario) led to a sharp increase in soil erosion by +257%.
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4.3. Yield reduction

In this study, the application of the Terraza model under the ex-
pected climate change showed a notable decrease in sunflower yield
and less effect for wheat crop. However, a remarkable yield reduction

for both wheat and sunflower are predicted in Almería province (AL02
district). Other soil types in Almería province (AL05, AL07 and AL08
districts) show the highest yield reduction in sunflower crop compared
with other province (Figs. 6 and 7), because of the lowest water surplus
and highest water deficit. Sunflower cultivation would be significantly

Fig. 6. Wheat and sunflower yield reduction under current and 2040, 2070 and 2100 of A1B climate change scenario.
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Fig. 7. Spatial distribution of wheat and sunflower yield reduction (%) under current and 2040, 2070 and 2100 of A1B climate change scenario.
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impacted by the expected climate change in the future. Supporting
these findings, Shahbazi and Jafarzadeh (2010) applied the Terraza
model for studying the effect of climate change on yield reduction of
wheat, alfalfa, sugar beet, potato, and maize; under the A1F1 scenario.
In general, the studied crops will be under severe water stress leading to
yield reduction for the future climate change scenario. Whereas, Blanco
et al. (2017) used the WOFOST model to simulate the effects of climate
change on different crop yields involving wheat and sunflower within
the period from 2000 to 2050. They found that under rainfed conditions
significant negative effects could be observed for sunflower cultivation.
Also, sunflower could be more vulnerable to the direct effect of tem-
perature rise and precipitation reduction, with both factors resulting in
severe yield reduction, decreasing oil content, and alterations in fatty
acids (Debaeke et al., 2017). The expected yield reductions for sun-
flower imply that the sunflower-cropped areas are projected to decrease
dramatically in 2040, 2070 and 2100. These results are supported by
Moriondo et al. (2011) who stated that in the southern regions of the
European Mediterranean countries the cultivated sunflower was more
prone to the direct effect of heat stress and drought during its growing
cycle, leading to severe yield reduction.

Wheat is cultivated during winter (November–March), when
Andalusia receives excess precipitation. Consequently, there is little
response of wheat to climate change. Based on the results presented
here, wheat cultivation would not be affected by expected future cli-
mate change as most of the area would theoretically experience no
wheat yield reduction till 2100 under the SRES A1B emissions scenario
(balanced). This observation is consistent with findings of Tao et al.
(2014) who observed that although the climate during the wheat-
growing period changed significantly between 1981 and 2009 in China,
this had produced only slight impacts on wheat yield, with reductions
ranging between 1.2 and 10.2%.

Additionally, Asseng et al. (2015) and Hernandez-Ochoa et al.
(2018) tested different wheat crop models to estimate the change in
wheat production with expected rising in the global mean temperature.
Asseng et al. (2015) concluded that there will be a reduction in global
wheat production of about 6% for each °C increase in global mean
temperature, where in our result the mean annual temperature will
increase 5 °C by 2100 compared with the current temperature, and will
cause a considerable reduction in wheat yield by 36%, particularly in
Al02 soil unit. Asseng et al. (2015) noticed wheat yield declines of
between 1% and 28% across 30 global locations with an increase of 2 °C
in temperature and between 6% and 55% within those sites with an
increase of 4 °C between 1981 and 2010. Furthermore, Valizadeh et al.
(2014) simulated effects of climate change on wheat production using
two general circulation models; United Kingdom Met Office Hadley
Center (HadCM3) and Institute Pierre Simon Laplace (IPCM4), under
three climate change scenarios of SRES- A1B, -B1 and -A2 in three time
periods 2020, 2050 and 2080 in an arid and semi-arid region of Iran.
Their results indicated that the reduction rate of wheat yield as winter
crop was variable between 1% and 37% and the maximum reduction
was observed in the time of 2020, under the HadCM3 model and the
A1B scenario. Finally, the assessment models showed a change in crop
suitability, but did not take into account the potential of farmers to
modify their agricultural practices and therefore to adapt to those
threats. The future cultivation of sunflower in Europe is undoubtedly
related to its potential adaptation to climate change (Debaeke et al.,
2017).

For example, many moderate and marginal lands may become more
suitable for agriculture if irrigation is applied. Corbeels et al. (2018)
showed the importance of climate-crop modeling for identifying sui-
table crop management methods as an adaptation plan towards climate
change.

In addition, some researchers (Atlin et al., 2017; Abd-Elmabod
et al., 2019b; Wiebe et al., 2019) illustrated recommendations to adapt
agriculture and soil systems to climate change. As the breeding of new
varieties that would be a long-term strategy to adapt cropping systems

to convalesce the future biotic stress and water deficit that will caused
by future climate change (Chapman et al., 2012; Reynolds et al., 2016;
Atlin et al., 2017). Also, improving the of manageable soil character-
istics as improving the soil drainage, reducing salinity, and declining
alkalinity and sodicity would be a rapid adaptation strategy to climate
change (Abd-Elmabod et al., 2017, 2019a,b). Likewise, soil organic
carbon is a key mechanism to mitigate and adapt soil systems to climate
change (Lal et al., 2011; Flint et al., 2018; Wiebe et al., 2019). Thus,
adapting with climate change for sustainable agriculture, it is necessary
to safeguard land resources and consequently increasing the agriculture
production.

As many modeling approaches and climate change impact assess-
ments, this study has some limitations. For example, the models used
here, i.e. Terraza and Cervatana, do not account for the potential effects
of atmospheric CO2 in contrast with other models such as the Decision
Support System for Agrotechnology Transfer (DSSAT) (Jones et al.,
2003; Amouzou et al., 2019; Cammarano et al., 2019; Guarin et al.,
2019). Nevertheless, although currents developments in predicting
climate effects on yield responses include CO2 concentrations as a
variable, i.e. using free-air CO2 enrichment (FACE), large uncertainties
remain in the prediction of the CO2 fertilization effect. This is parti-
cularly relevant in a long-term period, because CO2 levels can reach
saturation, and other factors such as water deficit, or addition of ni-
trogen could have a significant role (Manderscheid et al., 2018).

This research is a first step in developing more advanced meth-
odologies and multiple climate projections, e.g. multi-model ensembles,
and crop models should be compared in future work. Nevertheless, one
of the strengths this study is that we harnessed 18 regional climate
models specifically developed for the study area (Muñoz-Rojas et al.,
2013) in order to reduce part of the projection uncertainties associated
to climate models at different scales/regions (Xiong et al., 2020). The
spatialization of the model outputs as presented in this study is a great
advantage for potential implementation of targeted land management
strategies for climate change adaptation (Abd-Elmabod et al., 2019b).

5. Conclusions

Climate change in Andalusia (Southern Spain) is predicted to affect
directly and negatively on agricultural crop production, especially on
summer-grown rainfed crops such as sunflower, as a result of de-
creasing precipitation and increasing temperature. Variations in land
capability occur as consequence of the high variability of soil char-
acteristics and climate condition in Andalusia. In the studied area the
highest land capability class (S1) rarely occurs because there is always
at least one soil characteristic or climate parameter as a limiting factor.
This high variability of the evaluation results demonstrates the im-
portance of using soil factors, climate and crop information in con-
junction in decision-making regarding the formulation of site-specific
soil use and management strategies.

Future climate change impacts on land capability and yield reduc-
tion need to be sufficiently considered. Our assessment of climate
change impacts on the studied crops suggests an improvement of the
soil characteristics, crop systems and cultivar traits in order to adapt to
climate change and improve future sustainability. Likewise, further
work should also focus on the potential for agricultural practices to
moderate some of these effects, or for alternative crops to replace
sunflower, to improve future planning for agricultural sustainability.
Future studies should also consider indirect effects of climate change,
e.g. the influence of atmospheric CO2 or extreme climatic events on
crop production.
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Abstract 

Precision agriculture, facilitated by advancements in Artificial Intelligence (AI), has emerged as a transformative 
paradigm in modern farming. This review comprehensively examines the integration of AI technologies in precision 
agriculture to enhance sustainability and optimize farming practices. The paper synthesizes recent research and 
developments in AI applications, covering key areas such as crop monitoring, resource management, decision support 
systems, and automation. The adoption of AI-driven techniques, including machine learning, computer vision, and 
sensor technologies, is reshaping traditional farming methods by providing farmers with real-time data and actionable 
insights. Crop monitoring applications utilize satellite imagery, drones, and ground-based sensors to assess plant health, 
detect diseases, and optimize irrigation strategies. AI-driven decision support systems empower farmers to make 
informed choices based on data-driven predictions, weather forecasts, and historical patterns, contributing to resource-
efficient practices and minimizing environmental impact. Resource management is a critical aspect of sustainable 
farming, and AI plays a pivotal role in optimizing the use of water, fertilizers, and pesticides. Smart irrigation systems, 
enabled by AI algorithms, ensure precise and efficient water distribution, reducing water wastage and promoting water 
conservation. AI-driven analysis of soil conditions helps farmers tailor fertilization practices, enhancing nutrient 
utilization and minimizing environmental runoff. The review also explores the role of AI in automating farming 
operations through robotics and autonomous vehicles. These technologies not only alleviate labor shortages but also 
improve efficiency in planting, harvesting, and crop maintenance. Additionally, the integration of AI fosters connectivity 
in agriculture, enabling seamless communication between devices, sensors, and farming equipment. As precision 
agriculture continues to evolve, the review highlights challenges and future prospects. Ethical considerations, data 
security, and the digital divide in rural areas are among the challenges that need attention. Moreover, the paper 
discusses potential avenues for further research, emphasizing the need for interdisciplinary collaboration to address 
the complex issues associated with the sustainable implementation of AI in precision agriculture. This review provides 
a comprehensive overview of the transformative impact of AI in precision agriculture, offering insights into current 
technologies, challenges, and future directions. The integration of AI not only enhances productivity and efficiency but 
also contributes to the long-term sustainability of farming practices, ensuring food security in the face of a growing 
global population.  

Keywords: Precision agriculture; Artificial Intelligence (AI); Sustainable farming; Technology review; Crop 
monitoring 
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1. Introduction 

Precision agriculture, fueled by the integration of cutting-edge Artificial Intelligence (AI) technologies, stands at the 
forefront of a transformative era in modern farming (Sharma, et al., 2023). As the global population burgeons and 
environmental concerns intensify, the need for sustainable farming practices has become increasingly paramount. The 
convergence of AI with precision agriculture represents a promising avenue to address these challenges by optimizing 
resource utilization, enhancing crop management, and ultimately fostering a more sustainable and efficient agricultural 
ecosystem (Karunathilake, et al., 2023). The application of AI in precision agriculture revolves around leveraging 
advanced computational techniques, machine learning algorithms, computer vision, and sensor technologies to 
facilitate data-driven decision-making processes. This review aims to provide a comprehensive exploration of the 
multifaceted role that AI plays in reshaping conventional agricultural practices, emphasizing the pivotal technologies 
and their collective impact on achieving sustainability objectives. Central to the integration of AI in precision agriculture 
is the paradigm shift from traditional, uniform farming methods to a more personalized and adaptive approach (Misra 
and Ghosh, 2024). This transition is enabled by the real-time data acquisition capabilities of AI-driven technologies, 
such as drones, satellites, and ground-based sensors, which empower farmers with detailed insights into crop health, 
soil conditions, and environmental factors. By harnessing this wealth of information, farmers can make informed 
decisions regarding irrigation, fertilization, and pest control, thereby minimizing waste, optimizing resource allocation, 
and reducing the environmental footprint of agriculture (Patel, et al., 2023). The multifaceted applications of AI in 
precision agriculture extend beyond data analysis to encompass autonomous systems and robotics. Smart machines 
equipped with AI algorithms are revolutionizing farming operations, from planting and harvesting to crop maintenance 
(Mishra and Mishra, 2023). These autonomous technologies not only enhance operational efficiency but also address 
challenges associated with labor shortages, paving the way for a more sustainable and economically viable future for 
agriculture. As precision agriculture becomes increasingly data-centric, ethical considerations, data security, and 
equitable access to technology emerge as critical concerns (Wilgenbusch, et al., 2022). This review delves into the ethical 
implications of AI in agriculture, emphasizing the importance of responsible data management and addressing potential 
disparities in technology adoption. Furthermore, it explores the challenges associated with the digital divide in rural 
areas, underscoring the need for inclusive strategies that ensure all farmers can benefit from the advancements in 
precision agriculture (Robinson, et al., 2020). this review aims to provide a holistic examination of AI in precision 
agriculture, offering insights into the technologies shaping sustainable farming practices. By elucidating the current 
state of AI integration, challenges faced, and future prospects, this exploration contributes to the ongoing discourse on 
leveraging advanced technologies to meet the growing demands of global food production while ensuring 
environmental stewardship and long-term agricultural sustainability. 

2. Technologies in Crop Monitoring 

Crop monitoring is a pivotal aspect of precision agriculture, and the integration of advanced technologies has 
revolutionized the way farmers assess and manage their crops (Sishodia, et al., 2020). The utilization of cutting-edge 
tools enables real-time data acquisition, analysis, and decision-making, contributing to improved crop health, disease 
detection, and resource optimization. In this section, we explore the key technologies shaping crop monitoring in the 
era of AI-driven precision agriculture. Satellite technology provides a bird's-eye view of agricultural landscapes, offering 
invaluable insights into crop conditions, growth patterns, and overall health (Khan and Shahriyar, 2023). High-
resolution satellite imagery enables farmers to monitor large expanses of land efficiently, identifying areas that may 
require specific attention, such as pest infestations or nutrient deficiencies. The continuous advancements in satellite 
technology have enhanced the temporal and spatial resolution, making it an integral tool for precision agriculture (Fotso 
Kamga, et al., 2021). Unmanned aerial vehicles, commonly known as drones, have emerged as versatile tools for 
precision agriculture. Equipped with cameras and sensors, drones can capture high-resolution images and collect data 
with exceptional precision (Ballesteros, e). Drones enable farmers to monitor crops at a finer spatial scale, offering 
detailed information on plant health, growth variations, and potential issues. The agility and accessibility of drones 
make them particularly useful for timely and targeted interventions (Rejeb, et al., 2021). Deploying ground-based 
sensors directly in the field provides real-time, localized data on various crop parameters. These sensors can measure 
soil moisture levels, nutrient content, temperature, and other critical factors influencing crop health. The data collected 
from these sensors facilitate precise decision-making, allowing farmers to tailor irrigation and fertilization strategies to 
the specific needs of different areas within the same field (Mutyalamma, et al., 2020). The integration of AI enables real-
time data acquisition from various sources, including satellites, drones, and ground-based sensors. This continuous 
stream of data allows for dynamic monitoring of crop conditions, enabling farmers to respond promptly to emerging 
issues (Leitão, et al., 2019). Real-time data acquisition forms the foundation for adaptive and responsive farming 
practices, contributing to increased efficiency and sustainability. 
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AI algorithms analyze data from different monitoring sources to assess the overall health of crops (Pimenov, et al., 
2023). By identifying patterns associated with healthy and stressed plants, these algorithms can detect early signs of 
diseases, nutrient deficiencies, or pest infestations. This proactive approach empowers farmers to implement timely 
interventions, minimizing the impact of potential threats and optimizing crop yields (Liang and Shah, 2023). AI plays a 
crucial role in automating the detection of diseases in crops. By analyzing images and data collected from various 
monitoring technologies, machine learning algorithms can identify subtle signs of diseases before they become visually 
apparent. Early detection allows for targeted responses, reducing the need for broad-spectrum treatments and 
minimizing the environmental impact of pest control measures (Dinarello, et al., 2012). The integration of satellite 
imagery, drones, ground-based sensors, real-time data acquisition, crop health assessment, and disease detection 
technologies exemplifies the multifaceted approach to crop monitoring in precision agriculture (Kirsch, et al., 2018). 
These technologies collectively empower farmers with unprecedented insights, facilitating informed decision-making 
and contributing to the sustainable and efficient management of agricultural resources. 

3. Machine Learning in Decision Support Systems 

In the realm of precision agriculture, the fusion of Machine Learning (ML) with Decision Support Systems (DSS) has 
emerged as a powerful force, empowering farmers with data-driven insights and predictive analytics. This synergy 
facilitates informed decision-making, enhances resource management, and contributes to the overall sustainability of 
farming practices (Liu, et al., 2008). This comprehensive exploration delves into the various facets of how machine 
learning integrates with decision support systems in precision agriculture. Machine Learning algorithms are adept at 
processing vast amounts of data, extracting meaningful patterns, and generating predictions. In decision support 
systems, this capability enables farmers to make data-driven decisions based on historical data, current conditions, and 
predictive analytics (Beriya and Saroja, 2019). By leveraging ML, decision support systems move beyond traditional 
rule-based approaches, providing more nuanced and adaptable recommendations for farmers. One of the key strengths 
of ML in decision support systems is its ability to forecast future trends and outcomes (Sutton, et al., 2020). Through the 
analysis of historical data, weather patterns, and crop-specific parameters, machine learning models can predict crop 
yields, identify optimal planting times, and anticipate potential challenges such as disease outbreaks. Predictive 
analytics empower farmers to proactively plan and implement strategies for maximizing productivity (Liang and Shah, 
2023). Machine Learning plays a pivotal role in improving the accuracy of weather forecasting within decision support 
systems. ML algorithms analyze historical weather data, satellite imagery, and real-time meteorological information to 
provide more precise and localized weather predictions (Salcedo-Sanz, et al., 2020). Accurate weather forecasts enable 
farmers to optimize irrigation schedules, plan for adverse weather events, and mitigate the impact of climatic variations 
on crop yields. By examining historical data, machine learning algorithms can uncover patterns and trends that may not 
be apparent through traditional methods (Sarker, 2021). In decision support systems, this capability allows for a deeper 
understanding of how different factors, such as soil conditions, crop rotations, and pest prevalence, influence 
agricultural outcomes. Farmers can then adjust their practices based on these insights to enhance long-term 
sustainability. ML-driven decision support systems contribute significantly to the optimization of agricultural resources 
(Karthikeyan, et al., 2021). These systems can analyze data related to soil health, nutrient levels, and water usage to 
recommend precise irrigation and fertilization strategies. By tailoring resource application to the specific needs of each 
part of a field, farmers can achieve higher efficiency, reduce waste, and minimize environmental impact. 

The integration of Machine Learning in Decision Support Systems for precision agriculture is not without its challenges 
(Lindblom, et al., 2017). Ensuring the reliability of predictive models, addressing data quality issues, and providing user-
friendly interfaces are among the considerations. Additionally, the ethical implications of relying on algorithmic 
decision-making in agriculture warrant careful examination. 

The marriage of Machine Learning and Decision Support Systems marks a significant advancement in precision 
agriculture (Shorten, et al., 2021). The ability to harness the power of data for predictive analytics, optimize resource 
management, and facilitate informed decision-making holds immense promise for fostering sustainability and efficiency 
in modern farming practices. As technology continues to evolve, the synergy between ML and decision support systems 
will likely play a central role in shaping the future of agriculture. 

4. Resource Management through AI 

Effective resource management is at the core of sustainable and efficient agriculture. The integration of Artificial 
Intelligence (AI) technologies in precision agriculture has revolutionized how farmers optimize the use of resources 
such as water, fertilizers, and pesticides (Shaikh, et al., 2022, Adebukola et al., 2022). This comprehensive exploration 
delves into how AI contributes to resource management, ensuring a judicious and environmentally conscious approach 
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to farming practices. AI-driven smart irrigation systems represent a paradigm shift in water management for agriculture 
(Sinwar, et al., 2020). These systems leverage real-time data from various sources, including soil moisture sensors, 
weather forecasts, and crop requirements, to precisely control the timing and amount of irrigation. By dynamically 
adjusting water delivery based on actual needs, smart irrigation minimizes water wastage, promotes water 
conservation, and ensures optimal crop hydration (Abioye, et al., 2020). AI algorithms play a crucial role in the 
conservation of water resources by analyzing data related to soil moisture, weather patterns, and crop types (Ukoba 
and Jen, 2023). Through machine learning, these systems can learn and adapt to specific conditions, allowing farmers 
to implement efficient irrigation practices (Cravero and Sepúlveda, 2021). The result is not only reduced water 
consumption but also increased resilience to water scarcity, a critical consideration in the face of changing climate 
patterns. AI contributes to precision agriculture by optimizing the application of fertilizers. Machine learning models 
analyze soil composition, nutrient levels, and historical yield data to recommend personalized fertilization plans for 
different sections of a field (Ewim et al., 2021). This targeted approach enhances nutrient utilization efficiency, 
minimizes overuse of fertilizers, and mitigates the environmental impact of nutrient runoff into water systems (Hirel, 
et al., 2011). AI-driven systems assist in precisely managing nutrient levels in the soil. By continuously monitoring and 
analyzing data related to soil health, crop requirements, and nutrient content, these systems provide real-time insights 
into the nutritional needs of plants. This granular approach ensures that crops receive the appropriate nutrients at the 
right time and in the right quantities, promoting optimal growth and minimizing waste (Singh, et al., 2018). The 
implementation of AI in resource management contributes to a more environmentally sustainable agriculture sector 
(Mouchou et al., 2021, Owebor et al., 2022). By reducing water and fertilizer usage through targeted applications, AI 
helps minimize environmental pollution, soil degradation, and the eutrophication of water bodies. The ability to tailor 
resource management practices to the specific needs of each crop and field contributes to the overall reduction of the 
ecological footprint of farming. As AI continues to advance, the integration of robotics and autonomous vehicles in 
resource management further enhances efficiency. Automated equipment equipped with AI algorithms can precisely 
apply resources based on real-time data, reducing the reliance on manual labor and optimizing the use of resources. 
The incorporation of AI in resource management represents a transformative shift towards precision agriculture 
(Chowdhury, et al., 2023). By harnessing the power of data-driven insights, AI enables farmers to optimize water usage, 
fertilization practices, and overall resource allocation. The result is not only increased agricultural efficiency but also a 
significant step towards environmentally sustainable and resilient farming practices. 

5. Automation and Robotics in Farming Operations 

Automation and robotics have become integral components of modern agriculture, revolutionizing traditional farming 
practices and contributing to increased efficiency, productivity, and sustainability. In this comprehensive exploration, 
we delve into the diverse applications and transformative impact of automation and robotics in various farming 
operations. Autonomous vehicles equipped with precision technology navigate fields with unprecedented accuracy, 
optimizing planting and harvesting processes (Luettel, et al., 2012, Enebe, Ukoba, and Jen, 2019). These vehicles 
leverage AI algorithms to plant seeds at optimal depths and spaces, contributing to uniform crop growth. During 
harvesting, advanced sensors and robotic arms allow for selective and timely picking, reducing waste and increasing 
overall yield efficiency (Rajendran, et al., 2023). 

Autonomous vehicles equipped with robotic systems and AI-driven algorithms identify and target weeds or pests with 
precision. This targeted approach minimizes the use of herbicides and pesticides, reducing environmental impact while 
ensuring the health of crops. Robotics, guided by computer vision and machine learning, perform automated weeding 
by distinguishing between crops and weeds. This not only reduces the need for herbicides but also addresses labor 
shortages, making weed management more sustainable and cost-effective (Norsworthy, et al., 2012). Robotic arms 
equipped with cameras and sensors perform precise pruning and thinning of crops. This level of automation ensures 
consistent and optimal spacing between plants, promoting healthier growth and facilitating efficient harvesting. 

 Automation and robotics address the challenges associated with labour shortages in agriculture. The use of 
autonomous machines for repetitive tasks allows human labour to be directed towards more skilled and complex 
aspects of farming, increasing overall operational efficiency. While the initial investment in automation technologies 
can be substantial, the long-term economic viability becomes evident through reduced labor costs, increased 
productivity, and improved yield quality. The overall cost-effectiveness contributes to the sustainability of modern 
farming practices. The integration of IoT technologies allows for seamless connectivity between various robotic systems 
and agricultural equipment (Vermesan, et al., 2020, Ukoba and Jen, 2019). This interconnected network enables real-
time data exchange, facilitating adaptive decision-making and enhancing the overall efficiency of farming operations. 
Farmers can remotely monitor and control robotic systems, making adjustments based on real-time data and changing 
conditions. This level of control ensures that farming operations can be fine-tuned for optimal outcomes, even from a 
distance (Dong, et al., 2021). Automation and robotics have ushered in a new era of precision and efficiency in farming 
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operations. The integration of AI, robotics, and connectivity technologies not only addresses traditional challenges but 
also contributes to the sustainability and economic viability of agriculture. As technology continues to advance, the role 
of automation in reshaping the future of farming is poised to become increasingly central to global agricultural practices. 

6. Connectivity in Agriculture 

Connectivity in agriculture refers to the seamless integration of technologies and data exchange systems, creating a 
networked ecosystem that transforms traditional farming practices. This interconnected approach, fueled by 
advancements in communication and sensor technologies, plays a pivotal role in precision agriculture (Habibzadeh, et 
al., 2018). In this exploration, we delve into the significance of connectivity and its multifaceted applications in modern 
agriculture. The deployment of smart sensors in the field, coupled with the Internet of Things (IoT) technology, enables 
the real-time collection of data on various parameters such as soil moisture, temperature, and crop health (Vermesan 
and Friess, 2013, Uddin et al., 2022). These interconnected devices provide a continuous stream of valuable information, 
forming the foundation for data-driven decision-making in precision agriculture. Connectivity allows farmers to 
remotely monitor their fields through sensor-equipped devices. This real-time surveillance ensures that any anomalies, 
such as changes in weather conditions or signs of disease, are promptly detected, empowering farmers to take timely 
and informed actions. Connectivity extends to aerial technologies, including drones and satellites, which capture high-
resolution images and data. These technologies provide a comprehensive view of the entire farm, aiding in crop 
monitoring, disease detection, and assessment of overall field health (Lytos, et al., 2020). The data collected is 
transmitted for analysis, contributing to the generation of actionable insights. Ground-based sensors form an integral 
part of the connectivity network. Placed strategically across the field, these sensors measure soil conditions, nutrient 
levels, and other critical factors. The collected data is relayed to a centralized system for analysis, enabling precise 
decision-making regarding irrigation, fertilization, and pest control. Connectivity facilitates the integration of data from 
diverse sources onto centralized platforms or cloud-based systems. This aggregated data provides a holistic view of the 
farm, enabling comprehensive analysis and decision-making (Žuraulis and Pečeliūnas, 2023, Okunade et al., 2023, 
Maduka et al., 2023). Cloud computing ensures accessibility to information from anywhere, fostering flexibility and 
convenience for farmers. Connected systems leverage machine learning algorithms to analyze integrated data. 
Predictive analytics based on historical patterns and real-time inputs enable farmers to anticipate future trends, such 
as crop yields, weather conditions, and pest outbreaks. This predictive capability forms a cornerstone for proactive and 
informed decision-making (Petropoulos, et al., 2020). Connectivity fosters collaboration among farmers, researchers, 
and agricultural experts through online platforms. Information sharing on best practices, emerging technologies, and 
local insights enhances the collective knowledge base of the agricultural community, contributing to the sustainable 
advancement of the industry. Connected farm management software allows farmers to streamline their operations by 
integrating data on crop rotation, resource usage, and yield history. This comprehensive approach enables efficient 
planning, resource optimization, and the implementation of sustainable farming practices (Ikwuagwu et al., 2020, Little, 
et al., 2013). Conclusion, connectivity in agriculture is a transformative force that underpins the evolution of precision 
agriculture. The integration of interconnected devices, sensor networks, data integration, and collaborative platforms 
empowers farmers with real-time information and analytical tools, facilitating precision, sustainability, and informed 
decision-making. As the connectivity landscape continues to evolve, agriculture stands at the forefront of a digital 
revolution that promises to reshape the future of global food production. 

7. Ethical Considerations in AI-driven Agriculture 

The integration of Artificial Intelligence (AI) in agriculture brings about unprecedented advancements, transforming 
traditional farming practices. However, as the agricultural landscape evolves with the infusion of technology, ethical 
considerations become paramount. This exploration delves into the ethical challenges associated with AI-driven 
agriculture, emphasizing the need for responsible implementation and addressing potential societal impacts. The vast 
amount of data generated by AI-driven agriculture, including crop information, weather patterns, and farm 
management practices, raises concerns about data privacy. Farmers and stakeholders must ensure that sensitive 
information is securely managed, and individuals have control over how their data is used. The ownership and sharing 
of agricultural data pose ethical dilemmas. Farmers, technology providers, and researchers must establish clear 
guidelines regarding data ownership rights, and mechanisms for fair data sharing must be established to foster 
collaboration without compromising individual interests. The use of advanced monitoring technologies, such as drones 
and satellite imagery, may inadvertently lead to farm surveillance. Striking a balance between monitoring for crop 
health and respecting farmers' privacy is crucial to avoid unwarranted intrusion. Ethical considerations extend to the 
impact of monitoring on individuals and local communities. The deployment of AI technologies should be sensitive to 
cultural norms, community consent, and the potential consequences of data collection on the social fabric of agricultural 
communities. The adoption of AI in agriculture should address concerns related to equitable access to technology. 
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Ensuring that small-scale farmers, in addition to large-scale operations, have access to and can benefit from AI-driven 
advancements is essential to prevent exacerbating existing disparities. The digital literacy divide among farmers may 
pose ethical challenges. Efforts should be made to provide training and support to ensure that farmers, regardless of 
their technological background, can effectively navigate and make informed decisions in the AI-driven agricultural 
landscape. 

 The automation of farming operations through AI-driven technologies raises ethical questions regarding the potential 
displacement of agricultural labor. Mitigating the impact on employment and ensuring a just transition for affected 
workers should be integral to the ethical considerations in AI-driven agriculture. The adoption of AI should respect and 
align with local cultural and ethical values. Agricultural technologies should be implemented in ways that resonate with 
the values of the communities they serve, fostering acceptance and minimizing cultural disruptions. The opacity of AI 
algorithms raises concerns about accountability. Establishing transparency in algorithms used in decision support 
systems ensures that farmers understand the basis for recommendations and can trust the technology. Governments 
and international bodies must establish robust regulatory frameworks to govern the ethical use of AI in agriculture. 
These frameworks should address issues of data privacy, algorithmic transparency, and the responsible deployment of 
AI technologies. While AI-driven agriculture holds immense promise for enhancing productivity and sustainability, it is 
crucial to navigate its implementation with ethical considerations at the forefront. Striking a balance between 
innovation and responsibility ensures that AI technologies contribute positively to agriculture while safeguarding the 
interests of farmers, communities, and the broader society. Ethical considerations should be an integral part of the 
ongoing dialogue surrounding the future of AI in agriculture to create a resilient and equitable agricultural ecosystem. 

8. Challenges and Future Prospects 

As Artificial Intelligence (AI) continues to transform precision agriculture, ushering in a new era of sustainable farming 
practices, several challenges and exciting future prospects emerge on the horizon. This review comprehensively 
explores both the hurdles faced by AI in precision agriculture and the potential avenues for future developments. The 
quality and integration of diverse data sources, including satellite imagery, sensor data, and historical records, present 
challenges in creating a unified and reliable dataset for AI algorithms. Addressing concerns related to data privacy and 
security remains critical, especially as the amount of sensitive agricultural data collected continues to grow. Ensuring 
equitable access to AI technologies poses challenges, particularly for small-scale farmers who may lack the resources or 
digital literacy required for effective adoption. Ensuring that AI algorithms are unbiased and interpretable is a complex 
challenge, as biases may inadvertently be introduced during model training, leading to unfair outcomes. In regions with 
limited technological infrastructure, challenges related to network connectivity and access to advanced hardware may 
hinder the widespread adoption of AI-driven precision agriculture. 

The development of edge computing technologies can address infrastructure limitations by enabling data processing 
closer to the source, reducing the reliance on centralized computing resources. 

The evolution of Explainable AI (XAI) techniques holds promise for addressing the challenge of algorithmic 
interpretability, ensuring that farmers can understand and trust the recommendations provided by AI systems. 
Integrating block chain technology can enhance data security and privacy by providing a decentralized and tamper-
resistant system for managing agricultural data. Establishing collaborative platforms for research and knowledge 
sharing can help overcome challenges related to data quality, providing a collective understanding of best practices in 
AI-driven precision agriculture. 

The development of comprehensive policy and regulatory frameworks can guide the ethical and responsible 
implementation of AI in agriculture, addressing concerns related to data privacy, security, and fairness. Fostering 
inclusive technology adoption programs that prioritize digital literacy and provide support for small-scale farmers can 
contribute to overcoming the digital divide. The integration of expertise from diverse fields, including agriculture, 
computer science, ethics, and policy-making, is crucial for developing holistic and sustainable solutions that address the 
multifaceted challenges of AI in precision agriculture. Involving farmers, technology developers, policymakers, and 
researchers in ongoing dialogues ensures that the development and implementation of AI technologies align with the 
needs and values of the agricultural community. 

The challenges faced by AI in precision agriculture are opportunities for innovation and improvement. Future prospects 
lie in advancements in technology, the development of responsible frameworks, and fostering collaboration among 
stakeholders. As the agricultural landscape continues to evolve, addressing these challenges and embracing the 
potential of AI in precision agriculture will play a pivotal role in shaping a sustainable and technologically advanced 
future for global farming practices. 
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9. Conclusion 

The integration of Artificial Intelligence (AI) in precision agriculture marks a transformative journey towards 
sustainable and efficient farming practices. The comprehensive review of technologies and their applications 
underscores the profound impact AI has on revolutionizing traditional approaches to crop monitoring, resource 
management, and decision support systems. The amalgamation of satellite imagery, drones, ground-based sensors, and 
machine learning algorithms has empowered farmers with real-time data, facilitating proactive and informed decision-
making. The precision achieved in crop monitoring not only enhances productivity but also enables early detection of 
diseases and pests, minimizing the environmental impact of interventions. Machine learning, with its predictive 
analytics capabilities, has emerged as a cornerstone in decision support systems. The ability to analyze historical data, 
weather patterns, and crop-specific parameters equips farmers with invaluable insights, fostering resource 
optimization and contributing to long-term sustainability. Resource management, a critical aspect of sustainable 
agriculture, has been revolutionized through AI technologies. Smart irrigation systems, precise fertilization strategies, 
and the reduction of environmental impact demonstrate the potential of AI to address the challenges of resource 
scarcity and environmental degradation. The advent of automation and robotics in farming operations presents a 
paradigm shift, enhancing labor efficiency and economic viability. Autonomous vehicles, robotic systems, and connected 
machinery streamline tasks such as planting, harvesting, and crop maintenance, laying the foundation for a more 
technologically advanced and productive agricultural sector. Connectivity in agriculture, facilitated by interconnected 
devices and data integration, has paved the way for a holistic approach to farming. Real-time monitoring, collaborative 
platforms, and the exchange of knowledge among stakeholders contribute to an ecosystem where information flows 
seamlessly, fostering innovation and sustainable practices. However, amidst the promising advancements, ethical 
considerations loom large. Issues related to data privacy, the digital divide, and the impact of automation on 
employment demand careful attention. Striking a balance between innovation and responsibility is crucial to ensure 
that the benefits of AI in precision agriculture are equitably distributed and aligned with ethical principles. As we 
navigate the future of agriculture, challenges such as data quality, privacy concerns, and algorithmic biases must be met 
with proactive solutions. The prospects of advancements in edge computing, explainable AI, and inclusive technology 
adoption offer exciting avenues for overcoming these challenges and shaping a more resilient and equitable agricultural 
landscape. In essence, AI in precision agriculture is not just a technological evolution but a pathway to a more 
sustainable and productive future. The collaboration of stakeholders, interdisciplinary research, and responsible 
innovation will be key in harnessing the full potential of AI for the benefit of farmers, communities, and the global food 
system. The journey towards sustainable farming practices with AI at its core is an ongoing narrative, and with ethical 
considerations at the forefront, the agricultural sector is poised for a future that harmonizes technological progress with 
the principles of environmental stewardship and societal well-being  
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