

Physical load assessment of greenhouse cucumber farmers using OWAS and RULA methods

Salvador De-Benavides-Jiménez ^a, Marta Gómez-Galán ^{a,b,*}, Juan-Carlos Rubio-Romero ^c, Manuel Díaz-Pérez ^{b,d}, Ángel-Jesús Callejón-Ferre ^{a,b}

^a Department of Engineering, University of Almería, CIMEDES Research Center (CeiA3), Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain

^b Laboratory-Observatory of Andalusian Working Conditions in the Agricultural Sector (LASA), Avda. Albert Einstein, 4. Isla de la Cartuja, 41092 Seville, Spain

^c School of Industrial Engineering, University of Málaga, C/Dr. Ortiz Ramos, s/n, Teatinos 29071 Málaga, Spain

^d Department of Engineering, University of Almería, CIAMBITAL Research Center (CeiA3), Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain

ARTICLE INFO

Keywords:

Physical strain
Biomechanics
Farmers
Task evaluation

ABSTRACT

Work-related musculoskeletal disorders (MSDs) are very common in the agricultural sector because most tasks are manual. This study attempts to analyse the forced postures and repetitive movements in greenhouse cucumber workers. Two semi-quantitative assessment methods (Ovako Working Analysis System and Rapid Upper Limb Assessment) were used following an exhaustive field analysis of the work. The results indicate the need to avoid continuous back flexion, leg flexion and arm elevation. The tasks with the highest risk of MSDs are T1 (transplant furrow) and T4 (planting seedlings), which carry a 46% and 72% level-3 risk, respectively. Postural training for workers, mechanising tasks, and improving their physical state could reduce the risk of MSD.

1. Introduction

Around 1.71 billion people worldwide suffer from musculoskeletal disorders (MSDs; [Cieza et al., 2020](#)). Work-related MSDs are very common, affecting workers' health and impacting national economies ([EU-OSHA, 2020a](#)). In Norway, the mean economic cost of MSDs was €22,600, according to a study that considered 509 participants over a six-month period ([Killingmo et al., 2024](#)). In Kansas, they accounted for \$20,097 in indemnity and medical costs from 2014 to 2022 ([Manning and Jorgensen, 2024](#)). In Belgium, more than €3 billion correspond to healthcare costs, and €2 billion to absenteeism ([Gorasso et al., 2022](#)) while in Denmark shoulder musculoskeletal disorders represent an annual cost of approximately €1.21 billion ([Sorensen et al., 2022](#)).

In the agricultural sector, most tasks are carried out manually ([Riemer and Bechar, 2016](#)), meaning that workers often suffer from MSDs ([Tatar et al., 2023](#)). The most common ones are shoulder injuries, synovitis and tenosynovitis, hernias, epicondylitis, different nervous system disorders (e.g., carpal tunnel syndrome) and arthropathies ([EU-OSHA, 2020b](#)). The lower back and upper limbs are the most affected body parts ([EU-OSHA, 2020c](#)). Physical risk factors that stand out include repetitive movements, awkward positions, and heavy loads

([Benos et al., 2020](#)). These disorders can also be associated with psychosocial risks ([Du et al., 2022](#)), which will depend on the age of the agricultural worker, his/her physical condition, etc. ([Rohles, 1985](#)).

The use of agricultural vehicles ([Shukla et al., 2023](#)) or certain cases involving mechanization can also cause MSDs ([Milani and Monteiro, 2012](#)). However, they tend to decrease with their use compared to manual task performance ([Fethke et al., 2020; Ojha and Kwatra, 2016](#)). A study concluded that the trunk flexion of farmers was less harmful when they worked with machinery ([Khan et al., 2020](#)). The type of MSD depends on the equipment and the worker, so to prevent them it is necessary to consider ergonomic principles in their design and use anthropometric data from farmers in each country. ([Abouee-Mehrizi et al., 2022](#)).

To prevent MSDs, it is necessary to study the tasks involved in cultivating each crop independently and to identify the most affected areas of the body. Studies of this type have been conducted on different continents ([Varguese and Panicker, 2022; Table 1](#)).

There are several methods for assessing MSDs ([Yazdanirad et al., 2018](#)), which can be classified as direct reading, semi-quantitative, and self-reported. To select a method, one should consider the type of research and the purpose for which the data will be used ([David, 2005](#)).

* Corresponding author at: Department of Engineering, University of Almería, CIMEDES Research Center (CeiA3), Ctra. Sacramento, s/n, La Cañada, 04120 Almería, Spain.

E-mail address: mgg492@ual.es (M. Gómez-Galán).

Table 1

Main areas of the body affected according to the crop.

Plant/Crop	Continent	Body areas affected
Tomato (Ceccih et al., 2010)	Europe	Upper limbs
Grapes (Brumitt et al., 2011)	North America	Back
Flowers (Barrero et al., 2012)	South America	Upper limbs
Hazelnuts (Colantoni et al., 2013)	Europe	Upper limbs
Oil palm (Henry et al., 2015)	Asia	Neck/ Back/ Shoulders
Sweet Potato (Kearney et al., 2016)	North America	Back/Shoulders
Rice (Neubert et al., 2017)	Asia	Knees/Feet
Fruits (Thetkathuek et al., 2018)	Asia	Neck / Lower Back
Blueberries (Kim et al., 2018)	North America	Shoulders/Upper Limbs
Apple (Houshyar and Kim, 2018)	Asia	Lower back/ Knees/ Neck/ Shoulders
Vegetables and strawberries (Pinzke and Lavesson, 2018)	Europe	Lower back
Pineapple (Salleh et al., 2019)	Asia	Back/Lower Limbs
Dates (Mokdad et al., 2019)	Africa	Shoulders/ Hands/ Wrists/ Lower back/ Hips/ Knees/ Feet
Banana (Simas et al., 2020)	South America	Lower Back/ Shoulder / Knees
Mango (Boriboonsuksri et al., 2022)	Asia	Lower back/ Right shoulder/ Upper right arm

- Direct reading methods: Obtaining data with sensors and other devices placed on the body. Drawbacks include the need to train personnel to use them, their high cost, and some equipment that can only be used in a laboratory setting (David, 2005). Nevertheless, these methods are precise and objective (Amasay et al., 2009).
- Semi-quantitative methods: based on prior observation of the work and the assessment of postures (Takala et al., 2010). These methods are low cost and applicable to a wide range of sectors. However, they are less accurate and more time-consuming than direct reading methods (David, 2005; Takala et al., 2010).
- Self-reported methods: carrying out questionnaires or interviews (Kilbom, 1994). These methods are easy to use and

cheaper than other methods, but have poorly proven data reliability (David, 2005).

In Spain in 2021, 63.2 % of agricultural workers suffered from back pain, 60.5 % from upper limb discomfort, and 65.8 % from lower limb discomfort (INSST, 2023).

In Andalusia (Spain), greenhouse cultivation is the most dynamic type of agriculture (Junta de Andalucía, 2023). In Almería province, agriculture provides the second highest level of employment after the service sector. In the third quarter of 2023, 52,000 ag workers were employed (INE, 2023). The surface area of greenhouse cultivation in this province is close to 35,000 ha. Cucumber cultivation covers 5,614 ha, being the largest area after pepper (12,583 ha), watermelon (11,400 ha), tomato (8,201 ha), and courgette (8,013 ha). Cucumber production in Almería is 574,678 tons and 527,447 tons of this vegetable are exported from this province (2021/2022 season). In 2021/2022 the price of this product increased by 35.9 % (Cajamar, 2022). Despite the importance of this crop (Fig. 1), there is only one study found on the health and safety of greenhouse cucumber workers in the “Web of Science” database (Callejón-Ferre et al., 2011).

This research is justified given the scarcity of studies assessing the musculoskeletal risks faced by agricultural workers growing cucumbers in Spanish greenhouses. The aim is to determine whether the musculoskeletal system of agricultural workers who grow this vegetable in Andalusia is affected. The study attempts to identify the forced postures and repetitive movements in greenhouse cucumber workers in Almería, the Andalusian province with the highest level of cucumber production. The MSDs for each task will be analysed and the most affected body areas will be identified.

2. Materials and methods

2.1. Description of the study area and the workers

The study was carried out in two greenhouses (agricultural season 2021–2022), both located in El Ejido (Almería, Spain), specifically in the Campo de Dalías agricultural region (latitude: 36.810392, longitude: –2.861728; decimal degrees). The two greenhouses are asymmetrical, drip irrigated, with clayey soil covered in sand and surface areas of

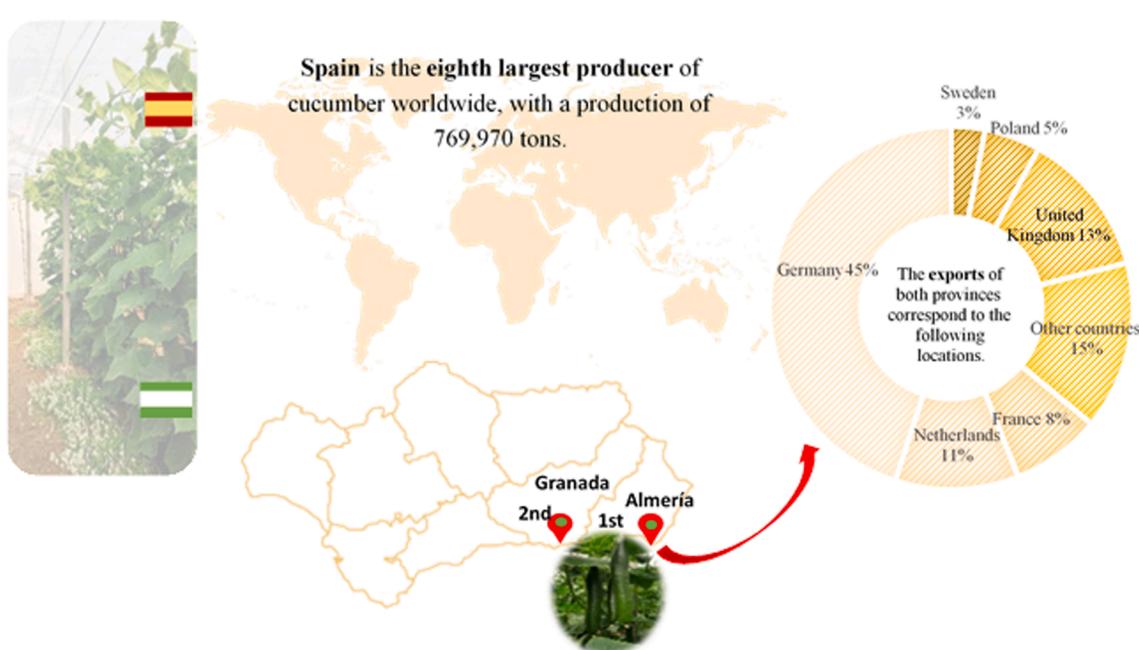


Fig. 1. Importance of cucumber cultivation in Spain (FAOSTAT, 2022; CAGPDS, 2023).

9,000 m² and 10,000 m². The crop is the “Almeria cucumber”, also known as the “Dutch cucumber”. The workforce consists of six male agricultural workers. The number of workers varies between one and six for each task, depending on its difficulty and estimated duration.

This research is based on assessing the postures and repetitive movements undertaken while executing the tasks, regardless of the personal characteristics of the agricultural workers or the type of greenhouse. This is because cucumber cultivation tasks are carried out in a very similar way in all Almerian cucumber greenhouses (5,614 ha), with the postures adopted by farmers being practically the same (Fig. 2). For this reason, the study does not focus on individual workers, but on a large number of postures for each agricultural task.

2.2. Method selection

Choosing the MSD assessment method depends on the application's purpose, the task characteristics, the assessor, and the tools available for data collection and analysis (Takala et al., 2010). The selected method should be simple and quick to use (David, 2005). Each of these criteria is analysed below and related to the methods (Table 2):

After analysing the above criteria (Table 2), direct reading and self-reported methods were ruled out for use in this study.

Among the semi-quantitative methods, it is difficult to choose one that adapts to all the study needs and work to be assessed, since each possesses its own characteristics. The application of more than one method for more complete results is considered a good option (Takala et al., 2010).

In this research, we selected two semi-quantitative methods, one to assess forced postures and the other to assess repetitive movements.

The following conditions were set to select the method for assessing forced postures:

- o It is not possible to apply just any method to specific sectors (David, 2005). Therefore, a method is sought that can be applied to the agricultural sector.
- o In each task, the worker adopts more than one posture. All the positions should be assessed over the entire crop cycle.
- o One wants to analyse the body in general, considering several different body areas.

One method that meets all these requirements is OWAS (The Ovako Working Analysis System; Karhu et al., 1977). It is widely applied in the agriculture sector (Gómez-Galán et al., 2017). For example, OWAS has been used to assess farmers of eucalyptus (Cunha et al., 2012), vineyards (Nwe et al., 2012), apples (Callea et al., 2014), oil palm fruits (Ng et al.,

Fig. 2. Task “Planting seedlings” carried out by different workers.

2015), asparagus (Sakmoto et al., 2017), etc. It allows numerous postures to be assessed for each task and considers back, arms, legs, and load (Karhu et al., 1977; Takala et al., 2010).

To select the assessment method for repetitive movements, the following conditions were set:

- o A method that can be applied to agricultural work.
- o Most of the tasks (transplanting, picking, etc.) in cucumber cultivation involve repetitive and forced movements of the upper limbs. These body members need to be analysed.

The method selected was RULA (The Rapid Upper Limb Assessment; McAtamney and Corlett, 1993). It has been successfully used in agriculture (Gómez-Galán et al., 2020). It is notable for its detailed assessment of the arm, forearm, and wrist (McAtamney and Corlett, 1993).

The OWAS and RULA methods contain significant differences, allowing a more detailed semi-quantitative MSD analysis to be performed.

2.3. Assessment methods

The OWAS method classifies postures into 252 possible combinations, depending on the position of the back, arms, legs and the load held. From the analysis, risk levels are obtained. The method assesses a set of postures over a period of time. The right and left sides of the body are analysed together (Karhu et al., 1977).

The RULA method focuses on MSDs of the upper limbs. It considers the posture adopted, the frequency of the activity, and the load involved. It classifies body members into two groups: group A (arm, forearm, and wrist) and group B (neck, trunk, and legs). From the analysis, the action level is obtained. The method assesses individual postures, those involving the greatest postural load. The right and left sides of the body are assessed separately (McAtamney and Corlett, 1993).

The application of these methods to greenhouse cucumber cultivation is detailed below:

PHASE 1: Observation (Common for both methods).

- o Visit to the greenhouse. On-site observation of all the tasks via video recording.

Field work: The greenhouse is visited on the days that the farmer is working during the cucumber cultivation season. Safe areas are selected for recording, without obstructing the worker's path. An evaluator records with the camera, moving along the greenhouse lines as the worker progresses.

To obtain the images necessary for the application of the OWAS method, a considerable recording time is required. A minimum observation time is set for each task (10 min) but it is advisable to record 20 min or more to have sufficient material, since in the analysis phase some images will be discarded. It is recorded from several perspectives, ensuring that the three parts of the body evaluated by the method and the load held are visualized. Recording of the same task should be continuous as far as possible, in order not to lose any of the postures adopted by the farmer.

For the RULA method, the recording is carried out considering that the images obtained must be parallel to the camera plane so that the angles can be measured in true magnitude. Videos are made of the right and left sides of the body.

- o Identification of the tasks and postures involved in cucumber cultivation, carried out by two evaluators trained in occupational risk prevention.

PHASE 2: Image Selection and Assessment (Independent for Each Method).

Table 2

Selection of the method type (YES: This method category can be used; NO: It is not possible to use this method category).

Method selection criteria (Takala et al., 2010)	Definition for this research	Requirements for this research	Direct reading methods	Semi-quantitative methods	Self-reported methods
Purpose	The purpose is to assess the postures adopted by the workers and the repetitive movements made during the different cucumber crop tasks in order to analyse MSDs – not to assess a group of workers, but rather their postures.	– Assessment of postures. – Assessment of repetitive movements. – Assessment exclusively of MSD and not of psychosocial disorders. – Participation of only a few workers. The sample of the study is postures.	YES	YES	NO
Task characteristics	Agriculture is characterized by highly repetitive work and physical demands (Das, 2023). The workplace (greenhouse) does not guarantee the workers' comfort (Callejón-Ferre et al., 2009). It involves exposure to very high temperatures during certain months (von Elsner et al., 2000).	– Non-invasive methods to avoid discomfort. – Application of the method in the workplace.	NO	YES	YES
Assessors	Assessors with training in occupational risk prevention, MSD assessment methods, and engineering (the use of specific technological equipment and software).	– The assessors in this study have degrees in the field of engineering and occupational risk prevention.	YES	YES	YES
Data collection and analysis tools	Low-cost or free-license tools.	– Limited financial resources.	NOThey are discarded on cost grounds as considerable financing is needed to acquire the necessary equipment (David, 2005).	YES	YES

o Selection of images containing the postures to be analysed:

OWAS: Images showing the worker's posture are selected every 5 s, using Kinovea software (Kinovea, 2025), a video analysis tool that allows images to be downloaded automatically by entering a sampling time. Invalid images are manually deleted. The selected time (5 s) is low, since farmers change posture frequently due to the repetitive nature of the tasks. With a longer time, consecutive postures would not be considered. 50 postures are selected for each task.

RULA: According to the authors of the method, the postures held for the longest time or with the greatest postural load are selected by sight (McAtamney and Corlett, 1993). Therefore, the most repeated ones and those that the farmer reported were most uncomfortable were selected. The side of the body that is considered most affected by observation is evaluated, and in case of doubt, both.

o Posture Assessment:

OWAS: Each posture is assigned a 4-digit code (Appendix A). The codes, which are classified by tasks, are then introduced into the Ergomet software (INERMAP, 2011). The risk level of each posture and each part of the body is obtained independently, in addition to the repetition percentages.

RULA: The angles formed by the different parts of the body are measured with AutoCAD and the postures are analysed. The data are entered into the Ergomet software (INERMAP, 2011) and one score is obtained for group A and another for group B. These scores are modified according to the frequency of the activity (static, repetitive, occasional) and the load handled, obtaining C and D scores. With these, one obtains a final score that provides the risk level (Appendix B).

The selection and analysis of postures are carried out by two evaluators trained in occupational risk prevention.

PHASE 3: Proposals for improvement (Common for both methods).

o If necessary, improvement measures to prevent MSD are proposed.

2.4. Study material

The following material was used for the research:

- o **Xiaomi POCO X3 NFC mobile camera.** For video recording during the observation period. It has a quad rear camera and its lens features are:
 - Main 64 megapixel camera.
 - 13 megapixel ultra wide angle camera.
 - 2 megapixel macro camera.
 - 2 megapixel depth camera. 1.75 μ m pixel.
- o **Kinovea Software.** To support image selection at certain time intervals (5 s with the OWAS method).
- o **AutoCAD software.** For measuring the angles between different body zones.
- o **Ergomet 3 software (INERMAP, 2011).** For data analysis and obtaining results using the OWAS and RULA methods.
- o **DAZ Studio 4.16 Pro and Adobe Photoshop CS6 software.** 3D modelling to represent some of the positions taken by the workers (Appendix C).

2.5. Cultivation work and tasks

Cucumber cultivation is divided into tasks (T), 18 in total (Appendix C), that were carried out during the cultivation cycle (from October 24th to June 2nd):

- o **Transplant furrow (T1):** Holes are made to place the cucumber seedling.
- o **Hole making (T2):** Holes are punctured to place the cucumber seedling.

- o Seedling placement (T3): The seedlings are placed.
- o Planting seedling (T4): The seedling is buried manually.
- o Anchoring (T5): When the plant begins to grow, it is tied to an upper thread so that it grows vertically.
- o Plant trellis at medium-low height (T6): As the plant grows, it is guided by the vertical thread so that it grows straight. The task is recorded when the plant is of medium-low height.
- o Plant trellis at elevated height (T7): The task is recorded when the plant is at its maximum height. It is fixed to the top of the thread with a plant clip.
- o Phytosanitary treatments (T8): Chemicals are applied to prevent and eliminate pests or diseases in the plant.
- o Introducing auxiliary fauna (T9): To prevent pests. Sachets with auxiliary fauna are placed at a medium height from the plant.
- o Thinning the plant (T10): Using pliers, leaves are removed from the plant to encourage its growth.
- o Tipping the plant (T11): The plant is supported by a horizontal thread so that it can continue growing in the downward direction of the thread.
- o Picking 1 (T12): The cucumbers are collected and placed in boxes. After collecting several lines from the greenhouse, the boxes are manually placed on a pallet. Cucumbers are not harvested from a specific part, but from the lower, middle or upper part. This task refers to the harvesting prior to tipping the plant.
- o Picking 2 (T13): This task refers to the harvesting of the cucumber after tipping the plant.
- o Driving forklift (T14): A forklift is used to introduce the pallets with the boxes into the greenhouse. When they are full of cucumbers, they are removed outside and placed in a truck for distribution.
- o Sweeping (T15): The greenhouse is swept to remove leaves, roots, etc.

Table 3

Risk levels by posture and task.

Posture Codes and Repetition Percentages												
T1 - Transplant Furrow	2 1 3 1	2 2 4 1	2 1 4 1	2 1 5 1	2 2 3 1	2 2 5 1	1 1 4 1	2 2 2 1	2 1 2 1	4 2 3 1	4 2 4 1	4 1 5 1
	26%	10%	4%	16%	12%	6%	2%	4%	6%	10%	2%	2%
T10 - Thinning the Plant	1 1 2 1	1 1 3 1	1 1 4 1	1 1 7 1	1 2 2 1	1 2 3 1	1 3 2 1	1 3 3 1	2 1 2 1	2 1 3 1	2 2 2 1	
	26%	6%	4%	8%	2%	2%	8%	2%	38%	2%	2%	
T13 - Picking 2	1 1 2 1	1 1 3 1	1 1 4 1	1 1 7 1	1 2 2 1	2 1 2 1	2 1 3 1	2 1 4 1	2 1 7 1	3 1 2 1	4 1 2 1	
	10%	2%	6%	6%	8%	32%	12%	4%	4%	6%	10%	
T17 - Cutting down the plant	1 3 2 1	2 2 2 1	1 1 7 1	2 1 2 1	1 2 3 1	1 2 2 1	2 2 3 1	1 1 3 1	1 1 2 1	2 1 3 1		
	20%	2%	20%	26%	2%	12%	2%	4%	10%	2%		
T5 - Anchoring	4 2 3 1	2 1 2 1	2 1 4 1	2 1 3 1	2 2 3 1	4 2 2 1	1 1 2 1	4 1 3 1	2 2 4 1			
	8%	44%	20%	8%	4%	4%	2%	8%	2%			
T4 - Planting Seedling	2 1 4 1	2 1 2 1	2 1 3 1	2 1 5 1	2 2 2 1	2 2 4 1	2 2 3 1	2 3 2 1				
	48%	12%	6%	2%	2%	22%	6%	2%				
T7 - Plant trellis at elevated height	1 3 2 1	1 1 2 1	1 2 2 1	1 1 3 1	3 1 2 1	2 2 2 1	3 3 2 1					
	48%	18%	14%	4%	4%	8%	4%					
T9 - Introducing auxiliary fauna	1 1 2 1	1 1 3 1	1 1 7 1	2 1 2 1	2 1 3 1	2 1 4 1	2 1 5 1					
	42%	2%	8%	30%	10%	2%	6%					
T15 - Sweeping	1 1 2 1	1 1 7 1	2 1 2 1	2 1 3 1	2 1 4 1	2 1 5 1	2 1 7 1					
	10%	8%	40%	28%	4%	4%	6%					
T16 - Root pulling	2 3 2 1	2 1 2 1	2 2 2 1	2 1 3 1	2 1 7 1	1 1 2 1	1 1 7 1					
	4%	72%	12%	6%	2%	2%	2%					
T3 - Seedling Placement	2 1 3 1	2 1 2 1	1 1 7 1	1 1 2 1	2 1 4 1	1 1 3 1						
	80%	4%	8%	2%	2%	4%						
T11 - Tipping the plant	1 1 3 1	1 2 2 1	1 3 2 1	1 1 2 1	2 2 2 1	2 3 2 1						
	14%	26%	46%	10%	2%	2%						
T12 - Picking 1	1 1 2 1	2 1 2 1	1 1 7 1	1 2 2 1	1 3 2 1							
	58%	24%	2%	12%	4%							
T2 - Hole Making	1 1 2 1	1 1 3 1	1 2 3 1	1 2 2 1								
	76%	6%	2%	16%								
T8 - Phytosanitary treatments	1 1 7 1	1 1 2 1	1 2 7 1	1 2 2 1								
	72%	24%	2%	2%								
T6 - Plant trellis at medium-low height	1 1 2 1	1 1 3 1	1 1 4 1									
	88%	10%	2%									
T14 - Driving forklift	2 1 1 1	4 1 1 1	1 1 2 1									
	84%	14%	2%									
T18 - Leaf Blowing	1 1 7 1											
	100%											

Table 3. Risk levels by posture and task.

- o Root pulling (T16): The root of the plant is pulled out with a sickle and then removed from the greenhouse.
- o Cutting down the plant (T17): The plant is placed in the ground once the entire cucumber has been collected and its root has been removed.
- o Leaf blowing (T18): A blower is used to remove any remaining leaves.

The postures adopted by workers during these tasks have been evaluated and selected according to the OWAS and RULA methods.

3. Results

3.1. OWAS method results

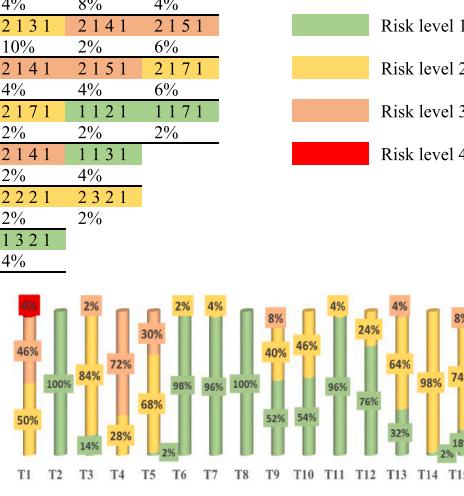

A total of 50 positions adopted by workers for each task (T1-T18) were assessed. The study sample comprised 900 postures adopted by the workers over the entire cucumber cultivation period.

Table 3 shows the level of risk by task according to OWAS. The most common level is 1, present in 16 of the 18 tasks. T2 (Hole making), T8 (Phytosanitary treatments) and T18 (Leaf blowing) stand out, since 100 % of these postures fall within this risk level.

Risk level 2 is the next most common, featuring 15 tasks. It is worth mentioning T14 (Driving forklift) and T16 (Root pulling), which have more than 95 % of the postures belonging to this level.

Higher risk levels (levels 3 and 4) are less frequent. Level 3 is present in 7 tasks, the highest risk being in T4 (Planting seedlings) at 72 %. Level 4 only appears in T1 (Transplant furrow) with a 4 % risk.

Table 3 also presents the level of risk by posture and task. T18 (Leaf blowing) is characterized by a single posture with straight back, arms below the shoulders, walking, and a load less than 10 kg (code 1171),

Table 4
Risk levels by body area.

Back				Arms				Legs							
1	2	3	4	1	2	3	1	2	3	4	5	6	7		
T1	2%	84%	0%	14%	56%	44%	0%	0%	10%	48%	18%	24%	0%	0%	
T2	100%	0%	0%	0%	82%	18%	0%	0%	92%	8%	0%	0%	0%	0%	
T3	14%	86%	0%	0%	100%	0%	0%	0%	6%	84%	2%	0%	0%	8%	
T4	0%	100%	0%	0%	68%	30%	2%	0%	16%	12%	70%	2%	0%	0%	
T5	2%	78%	0%	20%	82%	18%	0%	0%	50%	28%	22%	0%	0%	0%	
T6	100%	0%	0%	0%	100%	0%	0%	0%	88%	10%	2%	0%	0%	0%	
T7	88%	4%	8%	0%	30%	18%	52%	0%	92%	8%	0%	0%	0%	0%	
T8	100%	0%	0%	0%	96%	4%	0%	0%	26%	0%	0%	0%	0%	74%	
T9	52%	48%	0%	0%	100%	0%	0%	0%	72%	12%	2%	6%	0%	8%	
T10	58%	42%	0%	0%	84%	6%	10%	0%	76%	12%	4%	0%	0%	8%	
T11	96%	4%	0%	0%	24%	28%	48%	0%	86%	14%	0%	0%	0%	0%	
T12	76%	24%	0%	0%	84%	12%	4%	0%	98%	0%	0%	0%	0%	2%	
T13	32%	52%	6%	10%	92%	8%	0%	0%	66%	14%	10%	0%	0%	10%	
T14	2%	84%	0%	14%	100%	0%	0%	98%	2%	0%	0%	0%	0%	0%	
T15	18%	82%	0%	0%	100%	0%	0%	0%	50%	28%	4%	4%	0%	14%	
T16	4%	96%	0%	0%	84%	12%	4%	0%	90%	6%	0%	0%	0%	4%	
T17	68%	32%	0%	0%	62%	18%	20%	0%	70%	10%	0%	0%	0%	20%	
T18	100%	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%	100%	

 Risk level 1 Risk level 2 Risk level 3 Risk level 4

T1: Transplant Furrow; T2: Hole Making; T3: Seedling Placement; T4: Planting Seedling; T5: Anchoring; T6: Plant trellis at medium-low height; T7: Plant trellis at elevated height; T8: Phytosanitary treatments; T9: Introducing auxiliary fauna; T10: Thinning the Plant; T11: Tipping the plant; T12: Picking 1; T13: Picking 2; T14: Driving forklift; T15: Sweeping; T16: Root pulling; T17: Cutting down the plant; T18: Leaf Blowing

which is associated with the lowest risk level. T1 (Transplant furrow) includes the widest variety of postures, a total of 12, of which the rotated and flexed back, one arm raised, legs flexed, with balanced weight and a load less than 10 kg (code 4241) and the rotated and flexed back, arms below the shoulders, legs flexed with unbalanced weight and a load less than 10 kg (code 4151) stand out. Both are associated with the highest risk level although they only account for 4 % of the task postures. The load handled during all the tasks is less than 10 kg.

Finally, the risk levels are presented according to the positions of each part of the body assessed (Table 4). The farmer performs most tasks with the back completely straight or with the back bent. T4 (Planting seedling) and T16 (Root pulling) are always carried out with the back bent over, so they are associated with risk level 3. In contrast, T8 (Phytosanitary treatments) and T18 (Leaf blowing) are always performed with a straight back, so their risk level is 1. The most unfavorable back position (rotated and inclined) is present in various tasks with a repetition percentage equal to or less than 20 %, for which the associated risk level is 2.

The arms are usually below the shoulders (minimal risk level). The highest risk level in which one or both arms are raised is level 2, which is the case for only three tasks.

Throughout the cultivation, the legs are usually straight, or one is flexed and one straight. Of the latter, T3 (Seedling placement) stands out, for which the risk level is 3 since it is a much-repeated position. This level of risk is also present in T4 (Planting seedlings) for weight-balanced, flexed legs.

3.2. RULA method results

A total of 49 images corresponding to the 18 tasks were analysed. For each one, the right side of the body, the left side, or both were analysed

according to the repetitiveness or greater postural load.

Table 5 shows the angles measured for each posture (P) according to the RULA method, the scores, and their associated risk level. The highest C score is 7 points, which is highlighted in T1 (Transplant furrow) for the right side of the body (P1) and T12 (Picking 1) for the left side (P17). The highest D score (8 points) is present in T1 (Transplant Furrow), T4 (Planting seedling), T5 (Anchoring), T7 (Plant trellis at elevated height) and T16 (Root pulling), in all cases, for both sides of the body (P1, P5, P6, P8 and P24).

Regarding the total score, a value of 7 corresponds to the highest risk (level 4). This is present in 8 of the tasks analysed. Of these, T1 (Transplant furrow) and T10 (Plant Thinning) are the only ones where the risk changes to the left side of the body (level 3). The lowest risk level is 2, present in 8 tasks. This level is identical for both sides of the body, except in T2 (Hole Making) for P2.

4. Discussion

The combined flexion of the back and legs in these workers (T1: Transplant furrow, T4: Planting seedling and T5: Anchoring; Appendix C, Tables 3 and 5) may be due to the crawling nature of some tasks. These facts are consistent with the studies by [Riemer and Bechar \(2016\)](#) and [Kee \(2022\)](#).

Back flexion combined with a straight leg position (example: posture 2121; Table 3), can cause lumbar compression ([Pinzke & Lavesson, 2018](#)). This is one the most affected back area in various crops ([McMillan et al., 2015](#)), with an MSD prevalence of 74 % ([Varguese and Panicker, 2022](#)). In tasks such as “Introducing auxiliary fauna” (T9, Appendix C), back flexion (Tables 4 and 5) could be reduced using collaborative robots ([Yerebakan and Hu, 2024](#)).

Flexion and rotation of the back in a seated position (T14: Driving

Table 5

Angles obtained for each part of the body.

Task	Posture	Side	Angles					Scores			Risk
			Arm	Forearm	Wrist	Neck	Trunk	C	D	Total	
T1	P1	Rgt	95°	26°	12°	24°	96°	7	8	7	
T1	P1	Left.	50°	38°	7°	22°	78°	4	8	6	
T2	P2	Rgt	7°	31°	0°	33°	1°	3	4	4	
T2	P2	Left.	103°	39°	14°	28°	5°	5	4	5	
T3	P3	Rgt	17°	41°	21°	13°	33°	4	6	6	
T3	P3	Left.	57°	33°	0°	15°	78°	3	6	5	
T3	P4	Rgt	61°	46°	6°	26°	104°	4	7	6	
T4	P5	Rgt	99°	23°	13°	22°	106°	5	8	7	
T4	P5	Left.	102°	13°	13°	32°	102°	5	8	7	
T5	P6	Rgt	95°	10°	5°	14°	99°	5	8	7	
T5	P6	Left.	65°	65°	5°	15°	106°	5	8	7	
T6	P7	Rgt	44°	60°	27°	18°	2°	4	3	3	
T6	P7	Left.	41°	49°	7°	18°	3°	3	3	3	
T7	P8	Rgt	109°	25°	0°	29°	6°	5	8	7	
T7	P8	Left.	110°	34°	8°	26°	8°	5	8	7	
T7	P9	Rgt	112°	43°	16°	23°	21°	4	7	6	
T8	P10	Rgt	15°	100°	9°	18°	3°	3	3	3	
T8	P10	Left.	8°	98°	18°	20°	11°	3	3	3	
T8	P11	Rgt	119°	15°	18°	25°	4°	4	3	3	
T9	P12	Rgt	41°	38°	19°	12°	24°	4	5	5	
T9	P12	Left.	40°	39°	45°	20°	20°	4	5	5	
T10	P13	Rgt	75°	56°	25°	13°	41°	6	7	7	
T10	P13	Left.	49°	41°	8°	7°	50°	4	7	6	
T11	P14	Rgt	121°	15°	56°	26°	14°	6	6	7	
T11	P14	Left.	96°	73°	8°	32°	12°	5	6	7	
T12	P15	Rgt	104°	20°	26°	11°	0°	6	2	4	
T12	P15	Left.	81°	46°	19°	14°	12°	4	2	3	
T12	P16	Rgt	33°	38°	10°	21°	51°	4	6	6	
T12	P17	Rgt	54°	64°	46°	8°	4°	6	3	5	
T12	P17	Left.	70°	42°	0°	5°	0°	7	3	6	
T13	P18	Rgt	58°	62°	19°	13°	3°	5	3	4	
T13	P18	Left.	38°	54°	8°	10°	1°	4	3	3	
T13	P19	Rgt	118°	17°	12°	27°	15°	4	6	6	
T13	P20	Rgt	56°	25°	10°	17°	37°	5	5	6	
T14	P21	Rgt	52°	38°	24°	12°	12°	5	3	4	
T14	P21	Left.	58°	78°	14°	15°	15°	5	3	4	
T15	P22	Rgt	11°	88°	72°	45°	20°	3	5	4	
T15	P22	Left.	21°	46°	14°	23°	25°	3	5	4	
T15	P23	Rgt	99°	49°	10°	29°	108°	4	5	5	
T16	P24	Rgt	68°	42°	11°	18°	91°	5	8	7	
T16	P24	Left.	70°	58°	10°	5°	83°	5	8	7	
T16	P25	Rgt	100°	23°	27°	17°	92°	4	7	6	
T16	P25	Left.	92°	22°	6°	8°	83°	4	7	6	
T17	P26	Rgt	69°	54°	15°	29°	95°	5	6	7	
T17	P26	Left.	96°	6°	9°	38°	93°	5	6	7	
T17	P27	Rgt	114°	33°	37°	13°	8°	4	7	6	
T17	P27	Left.	110°	13°	9°	41°	2°	4	7	6	
T18	P28	Rgt	12°	47°	14°	16°	0°	3	3	3	
T18	P28	Left.	8°	20°	11°	19°	0°	2	3	3	

Action level 1 Action level 2 Action level 3 Action level 4

T1: Transplant Furrow; T2: Hole Making; T3: Seedling Placement; T4: Planting Seedling; T5: Anchoring; T6: Plant trellis at medium-low height; T7: Plant trellis at elevated height; T8: Phytosanitary treatments; T9: Introducing auxiliary fauna; T10: Thinning the Plant; T11: Tipping the plant; T12: Picking 1; T13: Picking 2; T14: Driving forklift; T15: Sweeping; T16: Root pulling; T17: Cutting down the plant; T18: Leaf Blowing

forklift; [Appendix C; Tables 3, 4 and 5](#)) is due to the driver's seat not offering good lumbar support and that the forklift does not have mirrors for controlled manoeuvring. Seats designed using anthropometric data and technical characteristics ([Mehta et al., 2008](#)) along with indirect camera and monitor visualization would improve the postures of these agricultural workers ([Rakha and Mann, 2013](#)).

Taking all of the above into account, it seems apparent that these workers can develop MSDs in the back and legs ([Tables 4 and 5](#)), body areas that are usually affected in agriculture ([Ulrey and Fathallah, 2013; Min et al., 2016](#)). The ergonomic load occurring due to recurrent back flexion is high (T1: Transplant furrow, T3: Seedling placement, T4: Planting seedling, T14: Driving forklift, T15: Sweeping, T16: Root pulling and T17: Cutting down the plant; [Table 4](#)), as described by [Baek](#)

[et al. \(2023\)](#). Something similar happens with the flexion of one or both legs (T3: Seedling placement, T4: Planting seedling and T5: Anchoring; [Table 4](#)), which is also affected by the uneven ground surface (sanded greenhouse). Straining the legs is common in tasks that are carried out on earthy terrain ([Juntaracena et al., 2018](#)).

Arm elevation ([Tables 3, 4 and 5](#)) is mainly due to trellising work being frequently carried out in the upper tiers of the plant (T7: Plant trellis at elevated height and T11: Tipping the plant; [Appendix C](#)). Determining the optimal working height when doing this work in a greenhouse ([Vazquez-Cabrera, 2016](#)) or using tools to prevent injuries ([Gobor et al., 2013](#)) would be measures allowing work to be done with the arms below shoulder level.

The most serious musculoskeletal disorders can prevent farmers from

carrying out their usual work (McMillan et al., 2015; Min et al., 2016). The risks obtained for cucumber cultivation do not result in the incapacity of workers. Nonetheless, it is essential to implement measures as soon as possible to reduce such disorders; for example, ergonomic training for workers, rotation between tasks, rest periods, mechanization of tasks (Barneo-Alcantara et al., 2021), improvement in physical condition (Sharan and Ajeesh, 2012), incorporating participatory ergonomics (IN SST, 2020), equipment-use training (Mehta et al., 2018) or redesigning tools used in the greenhouse (Jain et al., 2018).

The risks found using RULA are generally higher than those found using OWAS. This is because the former analyses the most detrimental posture of each task and the latter evaluates a set of postures (McAtamney and Corlett, 1993; Karhu et al., 1977).

Part of this study could be extrapolated to other cucumber farms around the world if crop management is similar. Example: using a trellis, in a greenhouse with a plastic cover, in similar latitudes, similar varieties, etc. In other studies of musculoskeletal evaluations with other crops (Bae et al., 2011; Kim et al., 2006) this fact has been contrasted, identifying that the risk of MSD was the same for melon harvesting tasks in different parts of the world.

Regarding this study's limitations, they concern the following:

- The assessor's subjectivity while carrying out the image analysis. Two evaluators were involved in this study. Including a third evaluator could help with a more accurate analysis.
- The recording of work not being continuous because the agricultural worker takes breaks or moves to other areas of the greenhouse. This causes the 5-second interval used for the selection of postures to not always be constant. Breaks and movements are not considered material for analysis, only the postures during the performance of the task.
- There are tasks where recording may be compromised. This is the case of "phytosanitary treatments", since during the recording there is a mist of the fluid that does not allow the image to be seen perfectly. In addition, evaluators sometimes keep a distance for safety reasons, which means using zoom.

5. Conclusions

Cucumber agricultural workers in Andalusian greenhouses are at risk of suffering musculoskeletal disorders as a result of certain tasks. The tasks that present the greatest danger to workers are T1 (Transplant Furrow), T4 (Planting Seedlings) and T5 (Anchoring).

The body area most affected during this cultivation is the back, and it is important to avoid continuous flexion as much as possible. Arm elevations and leg flexions also lead to high levels of risk.

To prevent musculoskeletal disorders, it is recommended that cucumber farmers warm up 15 min before starting their workday. The upper and lower limbs and back could be mobilized, performing slow and unforced movements. At the end of the workday, workers should also stretch, holding each exercise for approximately 15 s.

Using mechanization as much as possible is also recommended to reduce MSDs, although it is not very developed for greenhouse

agriculture.

The use of tools with extendable handles to adjust them to the height of the worker in tasks such as "hole making", the use of carts to perform tasks while sitting in tasks such as "transplant furrow", "seedling placement", "planting seedling" or "anchoring" and the use of pneumatic or electric scissors for "thinning the plant" are good alternatives to reduce MSDs.

Other measures relating to work management include taking breaks, alternating between different tasks, training workers on postural stress, improving their physical condition and efficient organisation.

Part of this study could be extrapolated to other crop farmers working under similar conditions.

CRediT authorship contribution statement

Salvador De-Benavides-Jiménez: Writing – review & editing, Writing – original draft, Visualization, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. **Marta Gómez-Galán:** Writing – review & editing, Writing – original draft, Visualization, Supervision, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization.

Juan-Carlos Rubio-Romero: Writing – review & editing, Supervision, Resources, Methodology, Investigation, Conceptualization. **Manuel Díaz-Pérez:** Writing – review & editing, Supervision, Resources, Methodology, Investigation, Conceptualization. **Ángel-Jesús Callejón-Ferre:** Writing – review & editing, Visualization, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Funding

This work was supported by the Laboratory-Observatory in Andalusian Working Conditions in the Agricultural Sector (LASA) [grant number 301315]; and Research Group TEP987 of the University of Almería [grant number 500189].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to acknowledge the assistance received from the *Instituto Andaluz de Prevención de Riesgos Laborales (IAPRL)* and the Laboratory-Observatory in Andalusian Working Conditions in the Agricultural Sector. Also, to Full Professor Juan-Carlos Rubio-Romero, as this idea arose during the research stay carried out by Marta Gómez-Galán under his supervision in the 2021–22 academic year in the Department of Economics and Business Administration at the University of Malaga (Spain).

Appendix A: OWAS method

Table A1

OWAS coding and risk levels (Karhu et al., 1977).

1ST DIGIT: BACK POSITION				2ND DIGIT: ARM POSITION		
1 Straight	2 Bent (incline>20°)	3 Twisted	4 Bent and twisted	1 Low	2 One low and one high	3 Both elevated
3RD DIGIT: LEG POSITION						
1 Seated	2 Standing, straight Legs	3 Standing, leg straight (thigh- calf angle>150°) and bent	4 Standing or squatting, legs bent, and weight balanced	5 Standing or squatting, legs bent, and weight unbalanced	6 On your knees (one or two supported)	7 Walking
4TH DIGIT: LOAD LIFTED			RISK LEVELS ACCORDING TO OWAS			
			Non-detrimental posture. No actions to take.	Posture that can be harmful. Corrective actions in a short period of time.	Harmful posture. Corrective actions in the shortest possible time.	Very harmful posture. Immediate corrective actions.
1 < 10 kg	2 10-20 kg	3 > 20 kg	1	2	3	4

Appendix B: RULA method

Table B1

RULA scores and risk levels (McAtamney and Corlett, 1993).

GROUP A SCORE				MODIFICATION OF ARM SCORE		
ARM SCORE						
1 20° to extension to 20° to flexion	2 Extension > 20° 20° < Flexion < 45°	3 45° < Flexion < 90°	4 Flexion > 90°	+1 Raised shoulder or rotated arm	+1 Abducted Arms	-1 There's a point of support
FOREARM SCORE		FOREARM SCORE MODIFICATION		WRIST SCORE		
1 60° < Flexion < 100°	2 Flexion < 60° Flexion > 100°	+1 On one side of the body	+1 Crossing the midline	1 Neutral position	2 Flexion or extension > 0° and < 15°	3 Flexion > 15°
WRIST SCORE MODIFICATION		TWISTED WRIST SCORE				
				1 With/without pronation or median supination	2 Extreme pronation or supination	
GROUP B SCORE						
NECK SCORE				MODIFICATION OF NECK SCORE		
1 0° < Flexion ≤ 10°	2 10° < Flexion ≤ 20°	3 Flexion > 20°	4 Extension of any degree	+1 Head Rotation	+1 Lateral head inclination	
TRUNK SCORE				TRUNK SCORE		

(continued on next page)

Table B1 (continued)

MODIFICATION					
1 Sitting or well supported Trunk-hip angle 90°	2 Flexion between 0° and 20°	3 20° < Flexion ≤ 60°	4 Flexion > 60°	+1 Trunk Rotation	+1 Lateral inclination of the trunk
LEG SCORE	C & D SCORE			ACTIVITY FREQUENCY	LOAD
			The A and B scores can be increased according to the frequency of the activity and the load handled, becoming C and D scores, respectively.		
1 Sitting with legs and feet well supported	1 Standing with balanced weight	2 Both feet are not supported, or the weight is not balanced	A → C B → D	a) y b) +1 a) +1; b) +2; d) y e) +3	a) 2 to 10 kg (intermittent) b) 2 to 10 kg (static or repetitive) c) >10 kg (intermittent) d) >10 kg (static or repetitive) e) Sudden loads
RISK LEVELS ACCORDING TO OWAS					
Score	1-2 Acceptable Risk	3-4 Work action may be necessary.	5-6 Redesign the work.	7 Urgent modifications.	
Action					
Risk Level	1	2	3	4	

Appendix C: Cucumber cultivation phases and tasks

Transplantation	Plant training	Phytosanitary treatments
T1: Transplant Furrow	T5: Anchoring	T8: Phytosanitary treatments
T2: Hole Making	T6: Plant trellis at medium-low height	
T3: Seedling Placement	T7: Plant trellis at elevated height	
T4: Planting Seedling	T11: Tipping the plant	
		T9: Introducing auxiliary fauna
Use of auxiliary fauna		
Pruning		
		T10: Thinning the Plant

References

Abdesalam, A., Wassif, G.O., Eldin, W.S., Abdel-Hamid, M.A., Damaty, S.I., 2023. Frequency and risk factors of musculoskeletal disorders among kitchen workers. *J. Egypt. Public Health Assoc.* 98 (1), 3. <https://doi.org/10.1186/s42506-023-00128-6>.

Abouee-Mehrizi, A., Saed-Moucheshi, S., Dianat, I., 2022. Review of anthropometric considerations for agricultural equipment design: a systematic review. *Int. J. Syst. Assur. Eng. Manag.* 13 (2), 571–581. <https://doi.org/10.1007/s13198-021-01353-y>.

Alberto, R., Draicchio, F., Varrecchia, T., Silvetti, A., Iavicoli, S., 2018. Wearable monitoring devices for biomechanical risk assessment at work: current status and future challenges a systematic review. *Int J Env Res Pub He.* 15 (9), 2001. <https://doi.org/10.3390/ijerph15092001>.

Amasay, T., Zodrow, K., Kincl, L., Hess, J., Karduna, A., 2009. Validation of tri-axial accelerometer for the calculation of elevation angles. *Int J Ind Ergonom.* 39 (5), 783–789. <https://doi.org/10.1016/j.ergon.2009.03.005>.

Bae, K.J., Lee, K.S., Kong, Y.K., Oh, G.J., Lee, S.J., 2011. The prevalence of musculoskeletal symptoms and the ergonomic risk factors among oriental melon-growing farmers. *Ann. Occup. Environ. Med.* 23 (1), 1–8. <https://doi.org/10.35371/kjoem.2011.23.1.1>.

Baek, S., Park, J., Kang, E.K., Kim, G., Kim, H., Park, H.W., 2023. Association Between Ergonomic Burden Assessed Using 20-Item Agricultural Work-Related Ergonomic Risk Questionnaire and Shoulder, Low Back, and Leg Pain in Korean Agricultural workers. *J. Agromedicine* 28 (3), 532–544. <https://doi.org/10.1080/1059924X.2023.2176958>.

Barneo-Alcantara, M., Díaz-Pérez, M., Gómez-Galán, M., Carreño-Ortega, A., Callejón-Ferre, A.J., 2021. Musculoskeletal disorders in agriculture: a review from Web of Science Core Collection. *Agronomy-Basel*. 11 (10), 2017. <https://doi.org/10.3390/agronomy11102017>.

Barrera, L.H., Pulido, J.A., Berrio, S., Monroy, M., Quintana, L.A., Ceballos, C., Hoegne-Hueckstaedt, U., Ellegast, R., 2012. Physical workloads of the upper-extremity among workers of the Colombian flower industry. *Am. J. Ind. Med.* 55 (10), 926–939. <https://doi.org/10.1002/ajim.22102>.

Benos, L., Tsaoopoulos, D., Bochtis, D., 2020. A review on ergonomics in agriculture. Part i: Manual Operations. *Appl Sci-Basel*. 10 (6), 1905. <https://doi.org/10.3390/app10061905>.

Brumitt, J., Reisch, R., Krasnoselsky, K., Welch, A., Rutt, R., Garside, L.I., McKay, C., 2011. Self-reported musculoskeletal pain in latino vineyard workers. *J. Agromedicine* 16 (1), 72–80. <https://doi.org/10.1080/1059924X.2011.534041>.

Boribounsukri, P., Taptagaporn, S., Kaewdok, T., 2022. Economic Task Analysis for Prioritization of Work-Related Musculoskeletal Disorders among Mango-Harvesting Agricultural workers. *Safety*. 8 (1), 6. <https://doi.org/10.3390/safety8010006>.

CAGPDS (Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible). Datos básicos pepino 2022/23. Hortícolas protegidos, 2023. <https://www.juntadeandalucia.es/agricultura/y-pesca/observatorio/servlet/FrontController?action=RecordContent&table=11114&element=4582070&subsector=&>. Accessed 10th February 2024.

Cajamar, ., 2021/2022.. Análisis de la campaña hortofrutícola. Accessed 25th December 2023 Campaña. <https://publicacionescajamar.es/wp-content/uploads/2022/11/informe-campana-21-22.pdf>.

Callea, P., Zimbalatti, G., Quendler, E., Nimmerichter, A., Bachl, N., Bernardi, B., Smoro, D., Benalia, S., 2014. Occupational illnesses related to physical strains in apple harvesting. *Ann. Agric. Environ. Med.* 21 (2), 407–411. <https://doi.org/10.5604/1232-1966.1108614>.

Callejón-Ferre, A.J., Pérez-Alonso, J., Carreño-Ortega, A., Velázquez-Martí, B., 2011. Indices of ergonomic-psychosociological workplace quality in the greenhouses of Almería (Spain): crops of cucumbers, peppers, aubergines and melons. *Safety Sci.* 49 (5), 746–750. <https://doi.org/10.1016/j.ssci.2010.12.009>.

Callejón-Ferre, A.J., Pérez-Alonso, J., Sánchez-Hermosilla, J., Carreño-Ortega, A., 2009. Ergonomics and psycho-sociological quality indices in greenhouses, Almería (Spain). *Span. J. Agric. Res.* 7 (1), 50–58. <https://doi.org/10.5424/sjar/2009071-397>.

Ceccchi, M., Colantoni, A., Massantini, R., Monarca, D., 2010. The risk of musculoskeletal disorders for workers due to repetitive movements during tomato harvesting. *J. Agric. Saf. Health* 16 (2), 87–98. <https://doi.org/10.13031/2013.29593>.

Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S., Vos, T., 2020. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet* 396 (10267), 2006–2017. [https://doi.org/10.1016/S0140-6736\(20\)32340-0](https://doi.org/10.1016/S0140-6736(20)32340-0).

Colantoni, A., Cecchini, M., Monarca, D., Bedini, R., Riccioni, S., 2013. The risk of musculoskeletal disorders due to repetitive movements of upper limbs for workers employed in hazelnut sorting. *J Agr Eng.* 44 (2), 649–654. <https://doi.org/10.4081/jae.2013.s2.e130>.

Cunha, E.G.S., de Souza, A.P., Minette, L.J., 2012. Ergonomic evaluation of the preparation of cuttings and minicuttings for eucalyptus seedling production, with the use of scissors. *Work* 41 (1), 5511–5515. <https://doi.org/10.3233/WOR-2012-0866-5511>.

David, G.C., 2005. Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. *Occup Med-Oxford*. 55 (3), 190–199. <https://doi.org/10.1093/occmed/kqi082>.

Das, B., 2023. Work-related musculoskeletal disorders in agriculture: Ergonomics risk assessment and its prevention among Indian agricultural workers. *Work* 76 (1), 225–241. <https://doi.org/10.3233/WOR-220246>.

Du, Y., Baccaglini, L., Johnson, A., Puvvula, J., Rautiainen, R.H., 2022. Factors associated with musculoskeletal discomfort in agricultural workers and ranchers in the US Central States. *J. Agromedicine* 27 (2), 232–244. <https://doi.org/10.1080/1059924X.2021.1893880>.

Campaign Guide, 2020. Accessed 22th December 2023. https://osha.europa.eu/sites/default/files/HWC20_Guide_TE0120122ENN.pdf.

EU-OSHA (European Agency for Safety and Health at Work). Musculoskeletal disorders in agriculture: from identifying the risks to adopting preventive measures, 2020b. <https://osha.europa.eu/es/publications/msds-agriculture-sector-identifying-risks-adopting-preventive-measures>. Accessed 19th January 2025.

EU-OSHA (European Agency for Safety and Health at Work). Risk assessment of upper limb musculoskeletal disorders in agriculture: compared experiences, 2020c. <https://osha.europa.eu/en/publications/risk-assessment-upper-limb-musculoskeletal-disorders-agriculture-compared-experiences>. Accessed 19th January 2025.

FAOSTAT (Food and Agriculture Organization of the United Nations). Crops and livestock products, 2022. <https://www.fao.org/faostat/en/#data/QCL>. Accessed 10th February 2024.

Fethke, N.B., Schall, M.C., Chen, H.W., Branch, C.A., Merlin, L.A., 2020. Biomechanical factors during common agricultural activities: Results of on-farm exposure assessments using direct measurement methods. *J. Occup. Environ. Hyg.* 17 (2–3), 85–96. <https://doi.org/10.1080/15459624.2020.1717502>.

Gobor, Z., Fröhlich, G., Potner, J., 2013. Automated attachment of supporting wires in high trellis of hops-initial investigation and study of performance of an advance prototype. *Appl. Eng. Agric.* 29 (1), 11–16.

Gómez-Galán, M., Callejón-Ferre, A.J., Pérez-Alonso, J., Díaz-Pérez, M., Carrillo-Castrillo, J.A., 2020. Musculoskeletal Risks: RULA Bibliometric Review. *Int. J. Environ. Res. Public Health* 17 (12), 4354. <https://doi.org/10.3390/ijerph17124354>.

Gómez-Galán, M., Pérez-Alonso, J., Callejón-Ferre, A.J., López-Martínez, J., 2017. Musculoskeletal disorders: OWAS review. *Ind. Health* 55, 314–337. <https://doi.org/10.2486/indhealth.2016-0191>.

Gorasso, V., Van Derheyden, J., De Pauw, R., Pelgrims, I., De Ridder, K., Vandevijvere, S., Vansteelandt, S., Vaes, B., De Smedt, D., Devleesschauwer, B., 2022. Direct and indirect costs attributable to musculoskeletal disorders in Belgium. *Eur. J. Pub. Health* 32 (3), ckac130.049. <https://doi.org/10.1093/eurpub/ckac130.049>.

Henry, L.J., Esfehani, A.J., Ramlí, A., Ishack, I., Justine, M., Mohan, V., 2015. Patterns of work-related musculoskeletal disorders among workers in palm plantation occupation. *Asia Pac. J. Public Health* 27 (2), 1785–1792. <https://doi.org/10.1177/1010539513475657>.

Houshyar, E., Kim, I.J., 2018. Understanding musculoskeletal disorders among Iranian apple harvesting laborers: Ergonomic and stop watch time studies. *Int. Journal Ind. Ergonomics*. 67, 32–40. <https://doi.org/10.1016/j.ergon.2018.04.007>.

Ine (Instituto Nacional de Estadística). Resultados provinciales. Ocupados por sector económico y provincia 2023 Accessed 25th December 2023.

INERMAP, Instituto de Ergonomía, MAPFRE, S.A., 2011. *ErgoMet 3. Version 3.0.0.33. Figuecuelas (zaragoza)*. Accessed 6th December 2021.

INSST (Instituto Nacional de Seguridad y Salud en el Trabajo). Encuesta Europea de Condiciones de Trabajo 2021. Datos de España, 2023. https://www.insst.es/documents/94886/5326464/Encuesta+Europa+de+Condiciones+de+Trabajo+2021+Datos+Espa%C3%91a+C3%BA+&2818-11-2023%29.pdf/6e6f46279-de3a-4fbf-1680-ddf93d08d07c?_=1701179937645. Accessed 28th April 2024.

Insst (Instituto Nacional de Seguridad y Salud en el Trabajo). Ergonomía participativa: un enfoque diferente en la gestión del riesgo ergonómico 2020 Accessed 6th March 2024.

Jain, R., Sain, M.K., Meena, M.L., Dangayach, G.S., Bhardwaj, A.K., 2018. Non-powered hand tool improvement research for prevention of work-related problems: a review. *Int. J. Occup. Saf. Ergon.* 24 (3), 347–357. <https://doi.org/10.1080/10803548.2017.1296214>.

Juntaracena, K., Neubert, M.S., Puntumetakul, R., 2018. Effects of muddy terrain on lower extremity muscle activity and discomfort during the rice planting process. *Int. J. Ind. Ergonomics*. 66, 187–193. <https://doi.org/10.1016/j.ergon.2018.03.009>.

Karhu, O., Kansi, P., Kuorinka, I., 1977. Correcting working postures in industry: A practical method for analysis. *Appl. Ergon.* 8, 199–201. [https://doi.org/10.1016/0003-6870\(77\)90164-8](https://doi.org/10.1016/0003-6870(77)90164-8).

Kearney, G.D., Allen, D.L., Balanay, J.A.G., Barry, P., 2016. A descriptive study of body pain and work-related musculoskeletal disorders among latino farmworkers working on sweet potato farms in eastern North Carolina. *J. Agromedicine* 21 (3), 234–243. <https://doi.org/10.1080/1059924X.2016.1178613>.

Ke, D., 2022. Participatory Ergonomic Interventions for Improving Agricultural Work Environment: A Case Study in a Farming Organization of Korea. *Appl. Sci.-Basel* 12 (4), 2263. <https://doi.org/10.3390/app12042263>.

Khan, M.I., Bath, B., Kociolek, A., Zeng, X.K., Koehncke, N., Trask, C., 2020. Trunk posture exposure patterns among prairie ranch and grain farmers. *J. Agromedicine* 25 (2), 210–220. <https://doi.org/10.1080/1059924X.2019.1659200>.

Kilbom, A., 1994. Assessment of physical exposure in relation to work-related musculoskeletal disorders-what information can be obtained from systematic observations. *Scand J Work Env Hea.* 20, 30–45.

Killingmo, R.M., Rystrand, T., Maas, E., Prripp, A.H., Aanesen, F., Tingulstad, A., Tveten, A.T., Oiestad, B.E., Grotle, M., 2024. Modifiable prognostic factors of high societal costs among people on sick leave due to musculoskeletal disorders: a replication study. *BMC Musculoskel Dis.* 25 (1), 990. <https://doi.org/10.1186/s12891-024-08132-3>.

Kim, E., Freivalds, A., Takeda, F., Li, C., 2018. Ergonomic Evaluation of Current Advancements in Blueberry Harvesting. *Agronomy* 8 (11), 266. <https://doi.org/10.3390/agronomy8110266>.

Kim, K., Kim, K., Kim, H., Lee, K., 2006. Risk assessment and symptoms of musculoskeletal disorders in melon farm workers. *J Korean Soc Occup Environ Hyg.* 16 (4), 385–397.

A. Kinovea microscope for your videos 2025 Accessed 20th January 2025.

Manning, C., Jorgensen, M., 2024. The price of pain: workers compensation costs for musculoskeletal claims in the state of Kansas, 2014–2022. *J. Occup. Environ. Med.* 66 (3), 252–262. <https://doi.org/10.1097/JOM.0000000000003034>.

McAtamney, L., Corlett, E.N., 1993. RULA: A survey method for the investigation of work-related upper limb disorders. *Appl. Ergon.* 24 (2), 91–99. [https://doi.org/10.1016/0003-6870\(93\)90080-S](https://doi.org/10.1016/0003-6870(93)90080-S).

McMillan, M., Trask, C., Dosmam, J., Hagel, L., Pickett, W., 2015. Prevalence of musculoskeletal disorders among saskatchewan agricultural workers. *J. Agromedicine* 20 (3), 292–301. <https://doi.org/10.1080/1059924X.2015.1042611>.

Mehta, C.R., Gite, L.P., Khadatkar, A., 2018. Women empowerment through agricultural mechanization in India. *Curr Sci India.* 114 (9), 1934–1940. <https://doi.org/10.18520/cs/v114/i09/1934-1940>.

Mehta, C.R., Gite, L.P., Pharade, S.C., Majumder, J., Pandey, M.M., 2008. Review of anthropometric considerations for tractor seat design. *Int J Ind Ergonom.* 38 (5–6), 546–554. <https://doi.org/10.1016/j.ergon.2007.08.019>.

Milani, D., Monteiro, M.S., 2012. Musculoskeletal symptoms and work ability among agricultural machinery operators. *Work* 41 (1), 5721–5724. <https://doi.org/10.3233/WOR-2012-0930-5721>.

Min, D., Baek, S., Park, H.W., Lee, S.A., Moon, J., Yang, J.E., Kim, K.S., Kim, J.Y., Kang, E.K., 2016. Prevalence and characteristics of musculoskeletal pain in Korean agricultural workers. *Ann. Rehabil. Med.* 40 (1), 1–13. <https://doi.org/10.5535/arm.2016.40.1.1>.

Mokdad, M., Bouhafs, M., Lahcene, B., Mokdad, I., 2019. Ergonomic practices in Africa: Date palm work in Algeria as an example. *Work* 62 (4), 657–665. <https://doi.org/10.3233/WOR-192898>.

Neubert, M.S., Karukunchit, U., Puntumetakul, R., 2017. Identification of influential demographic and work-related risk factors associated to lower extremity pain perception among rice agricultural workers. *Work* 58 (4), 489–498. <https://doi.org/10.3233/WOR-172649>.

Ng, Y.G., Mohd Tamrin, S.B., Mohd Yusoff, I.S., Hashim, Z., Deros, B.M.D., Abu Bakar, S., How, V., 2015. Risk factors of musculoskeletal disorders among oil palm fruit harvesters during early harvesting stage. *Ann. Agric. Environ. Med.* 22 (2), 286–292. <https://doi.org/10.5604/12321966.1152101>.

Nwe, Y.Y., Toyama, S., Akagawa, M., Yamada, M., Sotta, K., Tanzawa, T., Kikuchi, C., Ogiwara, I., 2012. Workload assessment with Ovako Working Posture Analysis System (OWAS) in Japanese vineyards with focus on pruning and berry thinning operations. *J Jpn Soc Hortic Sci.* 81 (4), 320–326. <https://doi.org/10.2503/jjshs1.81.320>.

Ohja, P., Kwatra, S., 2016. Development of MSD among the farm women involved in traditional and mechanized method of rice cultivation of northern India. *Indian J Tradit Know.* 15 (1), 162–166.

Pinzke, S., Lavesson, L., 2018. Ergonomic conditions in manual harvesting in Swedish outdoor cultivation. *Ann. Agric. Environ. Med.* 25 (3), 481–487. <https://doi.org/10.26444/aaem/93334>.

Rakhra, A.K., Mann, D.D., 2013. Evaluation of implement monitoring systems. *J. Agric. Saf. Health* 19 (1), 51–67. <https://doi.org/10.13031/2013.42542>.

Riemer, R., Bechar, A., 2016. Investigation of productivity enhancement and biomechanical risks in greenhouse crops. *Biosyst. Eng.* 147, 39–50. <https://doi.org/10.1016/j.biosystemseng.2016.03.009>.

Rohles Jr, F.H., 1985. Environmental ergonomics in agricultural systems. *Appl. Ergon.* 16 (3), 163–166. [https://doi.org/10.1016/0003-6870\(85\)90002-x](https://doi.org/10.1016/0003-6870(85)90002-x).

Sakamoto, T., Ochi, M., Kikuchi, Y., Kobayashi, K., Tanaka, T., Ozaki, Y., 2017. Reducing Burden during Summer Asparagus (*Asparagus officinalis* L.) Spear harvest by using long-shafted shears and a large-wheeled cart under modified branch training. *Hortic. J.* 86 (1), 37–44. <https://doi.org/10.2503/hortj.MI-081>.

Salleh, N.F.M., Sukadari, E.H., Khamis, N.K., Ramlil, R., 2019. Pattern of muscle contraction in different postures among Malaysia pineapple plantation workers. *Mater. Sci. Eng.* 469, 012088. <https://doi.org/10.1088/1757-899X/469/1/012088>.

Sharan, D., Ajeesh, P.S., 2012. Injury prevention in physiotherapists a scientific review. *Work* 41 (1), 1855–1859. <https://doi.org/10.3233/WOR-2012-0397-1855>.

Shukla, P., Metha, C.R., Agrawal, K.N., Potdar, R.R., Kumar, M., Singh, K., 2023. Approach for ergonomic assessment of self-propelled combine harvester seats base don anthropometric body dimensions. *Int J Occup Saf Ergo.* 29 (1), 283–293. <https://doi.org/10.1080/10803548.2022.2038460>.

Simas, J.M.M., Alencar, M.C.B., Yamauchi, L.Y., 2020. Musculoskeletal disorders in banana culture workers. *BrJP* 3 (1), 33–36. <https://doi.org/10.5935/2595-0118.20200008>.

Sorensen, L., van Tulder, M., Johannsen, H.V., Ovesen, J., Enemark, U., Blæhr, E.E., Oestergaard, L.G., 2022. Costs of shoulder disorders in Denmark: a nationwide cost-of-illness study investigating 617,334 patients and matched controls. *Pain* 163 (11), 2162–2171. <https://doi.org/10.1097/j.pain.0000000000002610>.

Takala, E.P., Pehkonen, I., Forsman, M., Hansson, G.Å., Mathiassen, S.E., Neumann, W. P., Sjøgaard, G., Veiersted, K.B., Westgaard, R.H., Winkel, J., 2010. Systematic evaluation of observational methods assessing biomechanical exposures at work. *Scand. J. Work Environ. Health* 36 (1), 3–24. <https://doi.org/10.5271/sjweh.2876>.

Tatar, V., Yazicioglu, O., Ayvaz, B., 2023. A novel risk assessment model for work-related musculoskeletal disorders in tea harvesting workers. *J. Intell. Fuzzy Syst.* 44 (2), 2305–2323. <https://doi.org/10.3233/JIFS-222652>.

Thetkathuek, A., Meepradit, P., Sangiamnak, T., 2018. A Cross-sectional study of musculoskeletal symptoms and risk factors in cambodian fruit farm workers in eastern region. *Thailand. Saf Health Work.* 9 (2), 192–202. <https://doi.org/10.1016/j.jshaw.2017.06.009>.

Ulrey, B.L., Fathallah, F.A., 2013. Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. *J Electromyogr Kines.* 23 (2), 195–205. <https://doi.org/10.1016/j.jelekin.2012.08.014>.

Varghese A, Panicker VV. Impact of musculoskeletal disorders on various agricultural operations: a systematic review. *Sadhana-Acad P Eng S.* 2022;47(1),46. doi: 10.1007/s12046-022-01809-2.

Vazquez-Cabrera, F.J., 2016. Ergonomic evaluation, with the RULA method, of greenhouse tasks of trellising crops. *Work* 54 (3), 517–531. <https://doi.org/10.3233/WOR-162314>.

Von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Grataud, J., Russo, G., Suay-Cortes, R., 2000. Review of structural and functional characteristics of greenhouses in European Union countries, part II: Typical designs. *J Agr Eng Res.* 75 (2), 111–126. <https://doi.org/10.1006/jaer.1999.0512>.

Yazdanirad, S., Khoshakhlagh, A.H., Habibi, E., Zare, A., Zeinodini, M., Dehghani, F., 2018. Comparing the effectiveness of three ergonomic risk assessment methods-RULA, LUBA, and NERPA-to predict the upper extremity musculoskeletal disorders. *Indian J Occup Environ Med.* 22 (1), 17–21. https://doi.org/10.4103/ijoem.IJOEM_23_18.

Yerebakan, M.O., Hu, B.Y., 2024. Wearable sensors assess the effects of human-robot collaboration in simulated pollination. *Sensors-Basel.* 24 (2), 577. <https://doi.org/10.3390/s24020577>.